Suppr超能文献

探索社交媒体上公众对姑息治疗和临终关怀的看法:主题建模与多类别情感分析

Exploring Public Perceptives on Palliative and Hospice Care in Social Media: Topic Modeling and Multi-Class Sentiment Analysis.

作者信息

Kim Aeri, Woo Kyungmi

机构信息

The Research Institute of Nursing Science, Seoul National University, South Korea.

College of Nursing, Seoul National University, Seoul, South Korea.

出版信息

Stud Health Technol Inform. 2025 Aug 7;329:1352-1356. doi: 10.3233/SHTI251059.

Abstract

Palliative care ensures patients' dignity and quality of life while supporting families during serious illness. However, barriers such as inadequate awareness hinder access to these services. This study analyzed 9,147 perspectives about palliative and hospice care posted on Naver Knowledge iN, a popular online platform in South Korea, using contextualized topic modeling and multi-class sentiment analysis (SA). Nine major themes were identified. SA showed that "sadness" was the most common emotion, followed by "neutral" and "anxiety." Notably, negative emotions were closely tied to "emotional and psychological support" theme. The KoBERT model used for SA achieved an accuracy of 0.73 and F1-score of 0.72. These findings highlight the need to address misconceptions and enhance public awareness of palliative care. Recommendations include creating targeted educational resources, implementing proactive screening for emotional distress, and establishing accessible communication platforms.

摘要

姑息治疗在重病期间确保患者的尊严和生活质量,同时为家庭提供支持。然而,诸如认知不足等障碍阻碍了人们获得这些服务。本研究使用情境主题建模和多类别情感分析(SA),分析了在韩国流行的在线平台Naver Knowledge iN上发布的9147条关于姑息和临终关怀的观点。确定了九个主要主题。情感分析表明,“悲伤”是最常见的情绪,其次是“中性”和“焦虑”。值得注意的是,负面情绪与“情感和心理支持”主题密切相关。用于情感分析的KoBERT模型准确率达到0.73,F1分数达到0.72。这些发现凸显了解决误解并提高公众对姑息治疗认识的必要性。建议包括创建有针对性的教育资源、对情绪困扰进行主动筛查以及建立易于使用的沟通平台。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验