文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于X平台十年数据的公众对脑机接口的认知:混合方法研究

Public Perception of the Brain-Computer Interface Based on a Decade of Data on X: Mixed Methods Study.

作者信息

Almanna Mohammed A, Elkaim Lior M, Alvi Mohammed A, Levett Jordan J, Li Ben, Mamdani Muhammad, Al-Omran Mohammed, Alotaibi Naif M

机构信息

College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.

King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.

出版信息

JMIR Form Res. 2025 Jun 25;9:e60859. doi: 10.2196/60859.


DOI:10.2196/60859
PMID:40561510
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12242710/
Abstract

BACKGROUND: Given the recent evolution and achievements in brain-computer interface (BCI) technologies, understanding public perception and sentiments toward such novel technologies is important for guiding their communication strategies in marketing and education. OBJECTIVE: This study aims to explore the public perception of BCI technology by examining posts on X (formerly known as Twitter) using natural language processing (NLP) methods. METHODS: A mixed methods study was conducted on BCI-related posts from January 2010 to December 2021. The dataset included 65,340 posts from 38,962 unique users. This dataset was subject to a detailed NLP analysis including VADER, TextBlob, and NRCLex libraries, focusing on quantifying the sentiment (positive, neutral, and negative), the degree of subjectivity, and the range of emotions expressed in the posts. The temporal dynamics of sentiments were examined using the Mann-Kendall trend test to identify significant trends or shifts in public interest over time, based on monthly incidence. We used the Sentiment.ai tool to infer users' demographics by matching predefined attributes in users' profile biographies to certain demographic groups. We used the BERTopic tool for semantic understanding of discussions related to BCI. RESULTS: The analysis showed a significant rise in BCI discussions in 2017, coinciding with Elon Musk's announcement of Neuralink. Sentiment analysis revealed that 59.38% (38,804/65,340) of posts were neutral, 32.75% (21,404/65,340) were positive, and 7.85% (5132/65,340) were negative. The average polarity score demonstrated a generally positive trend over the course of the study (Mann-Kendall Statistic=0.266; τ=0.266; P<.001). Most posts were objective (50,847/65,340, 77.81%), with a smaller proportion being subjective (14,393/65,340, 22.02%). Biographic analysis showed that the "broadcasting" group contributed the most to BCI discussions (17,803/58,030, 30.67%), while the "scientific" group, contributing 27.58% (n=16,005), had the highest overall engagement metrics. The emotional analysis identified anticipation (score = 10,802/52,618, 20.52%), trust (score=9244/52,618, 17.56%), and fear (score=7344/52,618, 13.95%) as the most prominent emotions in BCI discussions. Key topics included Neuralink and Elon Musk, practical applications of BCIs, and the potential for gamification. CONCLUSIONS: This NLP-assisted study provides a decade-long analysis of public perception of BCI technology based on data from X. Overall, sentiments were neutral yet cautiously apprehensive, with anticipation, trust, and fear as the dominant emotions. The presence of fear underscores the need to address ethical concerns, particularly around data privacy, safety, and transparency. Transparent communication and ethical considerations are essential for building public trust and reducing apprehension. Influential figures and positive clinical outcomes, such as advancements in neuroprosthetics, could enhance favorable perceptions. The gamification of BCI, particularly in gaming and entertainment, also offers potential for wider public engagement and adoption. However, public perceptions on X may differ from other platforms, affecting the broader interpretation of results. Despite these limitations, the findings provide valuable insights for guiding future BCI developments, policy making, and communication strategies.

摘要

背景:鉴于脑机接口(BCI)技术的最新发展和成就,了解公众对这类新技术的看法和情绪对于指导其在营销和教育中的传播策略至关重要。 目的:本研究旨在通过使用自然语言处理(NLP)方法检查X平台(前身为Twitter)上的帖子,探索公众对BCI技术的看法。 方法:对2010年1月至2021年12月期间与BCI相关的帖子进行了一项混合方法研究。数据集包括来自38962个唯一用户的65340条帖子。该数据集经过了详细的NLP分析,包括VADER、TextBlob和NRCLex库,重点是量化帖子中表达的情绪(积极、中性和消极)、主观程度以及情绪范围。使用曼-肯德尔趋势检验来检查情绪的时间动态,以根据每月发生率确定公众兴趣随时间的显著趋势或变化。我们使用Sentiment.ai工具,通过将用户个人资料传记中的预定义属性与特定人口统计群体进行匹配来推断用户的人口统计信息。我们使用BERTopic工具对与BCI相关的讨论进行语义理解。 结果:分析显示,2017年BCI讨论显著增加,这与埃隆·马斯克宣布创立Neuralink相吻合。情绪分析显示,59.38%(38804/65340)的帖子为中性,32.75%(21404/65340)为积极,7.85%(5132/65340)为消极。在研究过程中,平均极性得分总体呈积极趋势(曼-肯德尔统计量=0.266;τ=0.266;P<0.001)。大多数帖子是客观的(50847/65340,77.81%),主观的比例较小(14393/65340,22.02%)。传记分析表明,“广播”群体对BCI讨论的贡献最大(17803/58030,30.67%),而“科学”群体贡献了27.58%(n=16005),其总体参与度指标最高。情绪分析确定,预期(得分=10802/52618,20.52%)、信任(得分=9244/52618,17.56%)和恐惧(得分=7344/52618,13.95%)是BCI讨论中最突出的情绪。关键主题包括Neuralink和埃隆·马斯克、BCI的实际应用以及游戏化的潜力。 结论:这项NLP辅助研究基于X平台的数据,对公众对BCI技术的看法进行了长达十年的分析。总体而言,情绪是中性的,但谨慎担忧,预期、信任和恐惧是主要情绪。恐惧情绪的存在凸显了解决伦理问题的必要性,特别是围绕数据隐私、安全和透明度的问题。透明的沟通和伦理考量对于建立公众信任和减少担忧至关重要。有影响力的人物和积极的临床结果,如神经假体的进展,可能会增强正面看法。BCI的游戏化,特别是在游戏和娱乐领域,也为更广泛地吸引公众参与和采用提供了潜力。然而,X平台上的公众看法可能与其他平台不同,这会影响对结果的更广泛解读。尽管存在这些局限性,研究结果为指导未来BCI的发展、政策制定和传播策略提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4626/12242710/ef074933d5d4/formative-v9-e60859-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4626/12242710/ed78dfe125e5/formative-v9-e60859-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4626/12242710/f75fa7975e0f/formative-v9-e60859-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4626/12242710/9d570c15fb5e/formative-v9-e60859-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4626/12242710/ef074933d5d4/formative-v9-e60859-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4626/12242710/ed78dfe125e5/formative-v9-e60859-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4626/12242710/f75fa7975e0f/formative-v9-e60859-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4626/12242710/9d570c15fb5e/formative-v9-e60859-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4626/12242710/ef074933d5d4/formative-v9-e60859-g004.jpg

相似文献

[1]
Public Perception of the Brain-Computer Interface Based on a Decade of Data on X: Mixed Methods Study.

JMIR Form Res. 2025-6-25

[2]
E-Cigarette Narratives of User-Generated Posts on Xiaohongshu in China: Content Analysis.

J Med Internet Res. 2025-7-3

[3]
Differential Analysis of Age, Gender, Race, Sentiment, and Emotion in Substance Use Discourse on Twitter During the COVID-19 Pandemic: A Natural Language Processing Approach.

JMIR Infodemiology. 2025-7-28

[4]
Exploring Social Media Posts on Lifestyle Behaviors: Sentiment and Content Analysis.

JMIR Infodemiology. 2025-6-25

[5]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[6]
Using Natural Language Processing to Explore Social Media Opinions on Food Security: Sentiment Analysis and Topic Modeling Study.

J Med Internet Res. 2024-3-21

[7]
Adolescents' and Young Adults' Perceptions of a Pop-Up Aimed at Combating the Spread of E-Cigarette Misinformation on Social Media: Cross-Sectional Survey Study.

JMIR Form Res. 2025-8-19

[8]
Public Health Messaging on Twitter During the COVID-19 Pandemic: Observational Study.

J Med Internet Res. 2025-2-5

[9]
AI framework for DRIVE model based mental health detection in text: a case study on how coping strategies are expressed during COVID-19.

PeerJ Comput Sci. 2025-4-25

[10]
Stuttering Representation on X: A Detailed Analysis of Content, Sentiment, and Influences.

Am J Speech Lang Pathol. 2025-5-2

本文引用的文献

[1]
Signal acquisition of brain-computer interfaces: A medical-engineering crossover perspective review.

Fundam Res. 2024-4-16

[2]
Transfer learning promotes acquisition of individual BCI skills.

PNAS Nexus. 2024-2-16

[3]
The brain nebula: minimally invasive brain-computer interface by endovascular neural recording and stimulation.

J Neurointerv Surg. 2024-11-22

[4]
Neurofeedback on twitter: Evaluation of the scientific credibility and communication about the technique.

Heliyon. 2023-8-7

[5]
How Virtual Reality Technology Has Changed Our Lives: An Overview of the Current and Potential Applications and Limitations.

Int J Environ Res Public Health. 2022-9-8

[6]
Topics and Sentiments of Public Concerns Regarding COVID-19 Vaccines: Social Media Trend Analysis.

J Med Internet Res. 2021-10-21

[7]
COVID-19 Vaccine-Related Discussion on Twitter: Topic Modeling and Sentiment Analysis.

J Med Internet Res. 2021-6-29

[8]
Evaluation of the Implementation and Effectiveness of Community-Based Brain-Computer Interface Cognitive Group Training in Healthy Community-Dwelling Older Adults: Randomized Controlled Implementation Trial.

JMIR Form Res. 2021-4-27

[9]
Effects of Gamification in BCI Functional Rehabilitation.

Front Neurosci. 2020-8-21

[10]
BCI for stroke rehabilitation: motor and beyond.

J Neural Eng. 2020-8-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索