Suppr超能文献

利用大语言模型进行急诊科的早期诊断:比较ClinicalBERT和GPT-4

Leveraging LLMs for Early Diagnosis in the Emergency Department: Comparing ClinicalBERT and GPT-4.

作者信息

Cui Wanting, Finkelstein Joseph

机构信息

Department of Biomedical Informatics, University of Utah, Salt Lake City, UT.

出版信息

Stud Health Technol Inform. 2025 Aug 7;329:1840-1841. doi: 10.3233/SHTI251241.

Abstract

This study explored the potential of LLMs, such as ClinicalBERT and GPT-4, to identify potential diagnoses using early clinical notes from the MIMIC-III dataset. We compared these models across four conditions: circulatory system diseases, respiratory system diseases, septicemia, and pneumonia. ClinicalBERT consistently outperformed the GPT models, with its highest F1-score of 0.952 for respiratory system diseases. The GPT models, while showing high recall, had lower precision, with the highest F1-score of 0.784 achieved by the GPT binary voting method. ClinicalBERT demonstrated strong precision and F1-scores, while GPT-4 excelled in recall.

摘要

本研究探讨了诸如ClinicalBERT和GPT-4等语言模型利用MIMIC-III数据集中的早期临床记录来识别潜在诊断的潜力。我们在四种病症上对这些模型进行了比较:循环系统疾病、呼吸系统疾病、败血症和肺炎。ClinicalBERT始终优于GPT模型,其在呼吸系统疾病上的最高F1分数为0.952。GPT模型虽然召回率高,但精度较低,通过GPT二元投票法获得的最高F1分数为0.784。ClinicalBERT展示出了较高的精度和F1分数,而GPT-4在召回率方面表现出色。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验