Kwan Matthew M C, Day Nicole B, Konigsberg Iain R, Thoresen Evan, Harrell Abigail G, Busch Celeste E, Davidson Elizabeth J, Yang Ivana V, Shields C Wyatt
Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA.
Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA.
Adv Healthc Mater. 2025 Aug 7:e01348. doi: 10.1002/adhm.202501348.
Adoptive cell transfers (ACTs) constitute an emerging platform for improving the systemic delivery of nano- and microparticle systems. Macrophages (Mφ) are an attractive cell type for particle-carrying ACTs because their attachment, phagocytosis, and chemotaxis can improve pharmacokinetics and reduce off-target effects. However, little is known about how macrophage transport and function change when carrying particles of different shapes, or whether these changes can be leveraged for improving ACTs. This work investigates macrophage interactions with biodegradable spherical and discoidal particles to promote or suppress phagocytosis, respectively. Adoptively transferred macrophages with internalized spheres (Mφ-S) or surface-bound discs (Mφ-D) possess enhanced targeted delivery to solid tumors compared to conventional free microparticle administration by 5.2-fold and exhibit distinct phenotypic profiles within the cold B16-F10 tumor microenvironment. Moreover, phenotypic changes are evaluated upon particle association by profiling the transcriptional, chromatin accessibility, and protein state. Mφ-S complexes adopt epigenetic changes and key biomarkers associated with a proinflammatory phenotype. In Mφ-D complexes, a diverse chromatin and protein landscape with simultaneous upregulation of both pro- and anti-inflammatory biomarkers is observed, suggesting functional flexibility is observed. These findings suggest particle shape can be used as a design parameter to influence the function of adoptive macrophage transfers without compromising their delivery performance.
过继性细胞转移(ACTs)构成了一个新兴的平台,用于改善纳米和微粒系统的全身递送。巨噬细胞(Mφ)是用于携带颗粒的ACTs的一种有吸引力的细胞类型,因为它们的附着、吞噬作用和趋化作用可以改善药代动力学并减少脱靶效应。然而,对于巨噬细胞在携带不同形状颗粒时其转运和功能如何变化,或者这些变化是否可用于改善ACTs,人们了解甚少。这项工作研究了巨噬细胞与可生物降解的球形和盘状颗粒的相互作用,以分别促进或抑制吞噬作用。与传统的游离微粒给药相比,内化了球体的过继性转移巨噬细胞(Mφ-S)或表面结合了盘状物的巨噬细胞(Mφ-D)对实体瘤的靶向递送增强了5.2倍,并且在冷B16-F10肿瘤微环境中表现出不同的表型特征。此外,通过分析转录、染色质可及性和蛋白质状态来评估颗粒结合后的表型变化。Mφ-S复合物发生了与促炎表型相关的表观遗传变化和关键生物标志物变化。在Mφ-D复合物中,观察到了多样化的染色质和蛋白质格局,同时促炎和抗炎生物标志物均上调,这表明观察到了功能灵活性。这些发现表明,颗粒形状可作为一个设计参数,用于影响过继性巨噬细胞转移的功能,而不影响其递送性能。