Choi John, Shmukler Jennifer, He Derek
Adult Cardiothoracic Anesthesiology, Brigham and Women's Hospital, Boston, USA.
Anesthesiology, Mount Sinai Hospital, New York City, USA.
Cureus. 2025 Aug 7;17(8):e89552. doi: 10.7759/cureus.89552. eCollection 2025 Aug.
Redo valve-in-valve transcatheter aortic valve replacement (TAVR) confronts anesthesiologists with compounded hemodynamic and neurologic risk. We managed an 85-year-old male with severe mixed prosthetic aortic dysfunction whose pre-procedural transthoracic echocardiogram showed a peak velocity of 3.7 m/s⁻¹, a mean gradient of 24 mm Hg, an effective orifice area of 0.8 cm², and a posteriorly directed, eccentric regurgitant jet filling >50% of the left ventricular outflow tract. The failure was suspected to have been caused by structural valve deterioration within five years after the initial TAVR. CT confirmed adequate coronary heights and true-lumen dimensions for a 26 mm Sapien 3 Ultra Resilia valve. General anesthesia was induced with 20 mg of etomidate and 200 mcg of fentanyl and maintained with low-dose propofol (50-100 mcg/kg/min) and remifentanil (0.05-0.1 mcg/kg/min), permitting rapid titration around two rapid-ventricular-pacing (180 bpm) runs. Continuous transesophageal echocardiography (TEE)-guided balloon valvuloplasty, valve deployment, and real-time assessment of ventricular filling; anticipatory epinephrine infusion plus norepinephrine boluses countered pacing-induced hypotension. Cerebral oximetry monitored regional saturation during hemodynamic excursions. Intra-procedural TEE confirmed coaxial positioning, full expansion of the new prosthesis, and immediate abolition of the eccentric regurgitant jet. Post-deployment deep-gastric views demonstrated a peak velocity of 2.3 ms⁻¹, trivial central regurgitation, and preserved biventricular function; aortic-root angiography corroborated the absence of coronary obstruction or paravalvular leak. The patient was extubated in the hybrid suite, required <2 h of low-dose norepinephrine (0.02-0.06 mcg/kg/min), ambulated on postoperative day one, and was discharged home on day two. This case illustrates how detailed preoperative imaging, real-time TEE guidance, and proactive vasoactive strategies enable hemodynamic stability, neuroprotection, and fast-track recovery in high-risk redo TAVR.
再次经导管主动脉瓣置换术(TAVR)给麻醉医生带来了复杂的血流动力学和神经学风险。我们为一名85岁男性患者进行了手术,该患者患有严重的人工主动脉瓣功能障碍,术前经胸超声心动图显示峰值流速为3.7米/秒,平均压差为24毫米汞柱,有效瓣口面积为0.8平方厘米,并且有一个向后的偏心反流束,占据左心室流出道的50%以上。怀疑失败原因是初次TAVR术后五年内瓣膜结构退化。CT证实冠状动脉高度和真腔尺寸适合植入26毫米的Sapien 3 Ultra Resilia瓣膜。使用20毫克依托咪酯和200微克芬太尼诱导全身麻醉,并用低剂量丙泊酚(50 - 100微克/千克/分钟)和瑞芬太尼(0.05 - 0.1微克/千克/分钟)维持麻醉,以便在两次快速心室起搏(180次/分钟)期间进行快速滴定。在连续经食管超声心动图(TEE)引导下进行球囊瓣膜成形术、瓣膜植入以及对心室充盈情况进行实时评估;预先输注肾上腺素并推注去甲肾上腺素以应对起搏引起的低血压。在血流动力学波动期间,用脑血氧饱和度监测局部饱和度。术中TEE证实新假体同轴定位、完全展开,偏心反流束立即消失。植入后胃深部视图显示峰值流速为2.3米/秒,轻微中心反流,双心室功能保留;主动脉根部血管造影证实无冠状动脉阻塞或瓣周漏。患者在杂交手术室拔管,术后需要<2小时的低剂量去甲肾上腺素(0.02 - 0.06微克/千克/分钟),术后第一天可下床活动,第二天出院回家。该病例说明了详细的术前成像、实时TEE引导以及积极的血管活性策略如何在高风险再次TAVR中实现血流动力学稳定、神经保护和快速康复。