膜结合蛋白降解组装体的结构可塑性支持细菌对压力的适应。
Structural Plasticity of the Membrane-Bound Protein Degradation Assembly Supports Bacterial Adaptation to Stress.
作者信息
Iqbal Naseer, Keller Sandro, Ghanbarpour Alireza
机构信息
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis.
Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz.
出版信息
bioRxiv. 2025 Jul 25:2025.07.21.662073. doi: 10.1101/2025.07.21.662073.
Protein degradation by AAA+ proteases is essential for bacterial adaptation to environmental stress. The membrane-bound AAA+ protease FtsH forms a large inner-membrane complex with the SPFH (Stomatin, Prohibitin, Flotillin, HflK/C) family transmembrane proteins HflK and HflC, playing a key role in bacterial recovery from aminoglycoside antibiotic stress. Recent structural studies have revealed both open, asymmetric and closed, symmetric conformations of the HflK/C assembly under different sample-preparation conditions, suggesting two distinct models for how this complex modulates FtsH proteolysis. To determine which conformation reflects the biologically active state, we engineered a disulfide-crosslinked HflK/C variant to stabilize the closed conformation and resolved its structure using high-resolution cryo-EM. Phenotypic assays showed that cells expressing either this stabilized, closed HflK/C variant or an HflK/C mutant that disrupts interactions with FtsH exhibit significantly impaired growth under aminoglycoside stress. Surprisingly, the cryo-EM structure of the FtsH•HflK/C complex from cells challenged with the aminoglycoside antibiotic tobramycin revealed a novel HflK/C arrangement, characterized by two openings on opposite sides that may facilitate substrate access to FtsH during proteotoxic stress. Together, our results suggest that both the dynamic open conformation of HflK/C and its specific interactions with FtsH are critical for adaptation to aminoglycoside-induced stress. Given the conserved structural and functional features of SPFH family members, our findings may offer a broader framework for understanding how this protein family operates under both basal and stress conditions.
AAA+蛋白酶介导的蛋白质降解对于细菌适应环境压力至关重要。膜结合的AAA+蛋白酶FtsH与SPFH(Stomatin、Prohibitin、Flotillin、HflK/C)家族跨膜蛋白HflK和HflC形成一个大的内膜复合物,在细菌从氨基糖苷类抗生素压力中恢复过程中起关键作用。最近的结构研究揭示了在不同样品制备条件下HflK/C组装体的开放、不对称构象和封闭、对称构象,这暗示了该复合物调节FtsH蛋白水解的两种不同模型。为了确定哪种构象反映生物活性状态,我们设计了一种二硫键交联的HflK/C变体来稳定封闭构象,并使用高分辨率冷冻电镜解析其结构。表型分析表明,表达这种稳定的、封闭的HflK/C变体或破坏与FtsH相互作用的HflK/C突变体的细胞在氨基糖苷类压力下生长显著受损。令人惊讶的是,来自用氨基糖苷类抗生素妥布霉素处理的细胞的FtsH•HflK/C复合物的冷冻电镜结构揭示了一种新的HflK/C排列方式,其特征是在相对的两侧有两个开口,这可能在蛋白毒性应激期间促进底物进入FtsH。总之,我们的结果表明,HflK/C的动态开放构象及其与FtsH的特异性相互作用对于适应氨基糖苷类诱导的压力至关重要。鉴于SPFH家族成员保守的结构和功能特征,我们的发现可能为理解该蛋白家族在基础和应激条件下的运作方式提供更广泛的框架。
相似文献
Structure. 2024-10-3
Cochrane Database Syst Rev. 2022-5-20
JBJS Essent Surg Tech. 2025-8-15
2025-1
Cochrane Database Syst Rev. 2013-4-30
Psychopharmacol Bull. 2024-7-8
Cochrane Database Syst Rev. 2017-4-25
本文引用的文献
Nat Commun. 2025-8-12
Proc Natl Acad Sci U S A. 2025-8-5
Nat Struct Mol Biol. 2025-6-23
PLoS Biol. 2025-4-7
Nat Cell Biol. 2025-4
Microbiol Spectr. 2025-1-7
Nat Commun. 2024-11-8
Structure. 2024-10-3