Stoner Jack, Li Shufang, Fu Ziao
Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA.
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
Nat Commun. 2025 Aug 12;16(1):7439. doi: 10.1038/s41467-025-62859-8.
Biological membranes are not just passive barriers-they actively sense and respond to mechanical forces, in part through specialized proteins embedded within them. Among these are Stomatin-family proteins, which are known to influence membrane stiffness and regulate ion channels, yet how they achieve these functions at the molecular level has remained elusive. Here, we report the 2.2 Å cryo-electron microscopy structure of the human Stomatin complex in a native membrane environment. We find that Stomatin assembles into a 16-subunit ring-shaped homo-oligomer, forming a ~12 nm-wide cage that defines a mechanically distinct, curvature-resistant membrane microdomain. While the majority of the complex exhibits C16 symmetry, the C-terminal domains adopt two alternating conformations, producing a symmetry-broken hydrophobic β-barrel pore with local C8 symmetry. The membrane beneath the complex remains flat despite surrounding curvature, indicating localized membrane stiffening. The structure reveals a conserved network of inter-subunit salt bridges that stabilize the assembly. These findings provide a molecular framework for how Stomatin oligomers shape membrane architecture and mechanics, offering insight into their roles in mechanotransduction and diseases such as nephrotic syndrome.
生物膜并非仅仅是被动屏障——它们能主动感知并响应机械力,部分是通过嵌入其中的特殊蛋白质来实现的。其中包括斯托马丁家族蛋白,已知其会影响膜的硬度并调节离子通道,然而它们如何在分子水平上实现这些功能仍不清楚。在此,我们报道了在天然膜环境中人类斯托马丁复合物的2.2埃冷冻电子显微镜结构。我们发现斯托马丁组装成一个16亚基的环形同型寡聚体,形成一个约12纳米宽的笼状结构,界定了一个机械特性独特、抗曲率的膜微区。虽然复合物的大部分呈现C16对称性,但C末端结构域采用两种交替构象,产生一个具有局部C8对称性的对称破缺疏水β桶状孔。尽管周围存在曲率,复合物下方的膜仍保持平坦,表明膜发生了局部硬化。该结构揭示了一个稳定组装的亚基间盐桥保守网络。这些发现为斯托马丁寡聚体如何塑造膜结构和力学提供了一个分子框架,有助于深入了解它们在机械转导以及诸如肾病综合征等疾病中的作用。