Yenkikar Anuradha, Mishra Ved Prakash, Bali Manish, Ara Tabassum
School of Engineering, Amity University Dubai Campus, Dubai, 25314, United Arab Emirates.
Department of CSE(AI), Vishwakarma Institute of Technology, Pune, India.
MethodsX. 2025 Jul 18;15:103517. doi: 10.1016/j.mex.2025.103517. eCollection 2025 Dec.
Accurate and interpretable prediction of the Air Quality Index (AQI) is critical for public health decision-making and environmental policy enforcement. This study presents a hybrid forecasting framework that combines the strengths of Random Forest Regression (RFR) and Autoregressive Integrated Moving Average (ARIMA) models to improve AQI prediction accuracy while maintaining model transparency. The RFR captures nonlinear relationships among pollutants, while ARIMA is used to model the temporal patterns in RFR residuals, forming a two-stage learning architecture. The model is trained and evaluated on multi-year AQI data from India and validated using an expanding window cross-validation strategy to maintain temporal integrity. To ensure transparency and interpretability, the study employs SHAP ((SHapley Additive Explanations) to uncover the influence of key pollutants such as PM₂.₅, NO₂, and SO₂. Additionally, Ljung-Box diagnostics and uncertainty bands are used to validate model adequacy. Compared to baseline models, the hybrid approach achieves lower Mean Squared Error (MSE = 508.46) and a higher R² score (0.94), confirming improved generalization. This research contributes a replicable, explainable, and efficient AQI forecasting framework suited for deployment in resource-constrained urban environments. The method comprises of: Residual learning hybrid model: Random Forest for prediction + ARIMA for residual correction Time-aware validation using expanding window cross-validation Model interpretability through SHAP analysis.
准确且可解释的空气质量指数(AQI)预测对于公共卫生决策和环境政策执行至关重要。本研究提出了一种混合预测框架,该框架结合了随机森林回归(RFR)和自回归积分移动平均(ARIMA)模型的优势,以提高AQI预测准确性,同时保持模型的透明度。RFR捕捉污染物之间的非线性关系,而ARIMA用于对RFR残差中的时间模式进行建模,形成一个两阶段学习架构。该模型在来自印度的多年AQI数据上进行训练和评估,并使用扩展窗口交叉验证策略进行验证,以保持时间完整性。为确保透明度和可解释性,该研究采用SHAP(夏普利值加法解释)来揭示关键污染物(如PM₂.₅、NO₂和SO₂)的影响。此外,使用Ljung-Box诊断和不确定性带验证模型的充分性。与基线模型相比,混合方法实现了更低的均方误差(MSE = 508.46)和更高的R²分数(0.94),证实了泛化能力的提高。本研究贡献了一个适用于在资源受限的城市环境中部署的可复制、可解释且高效的AQI预测框架。该方法包括:残差学习混合模型:用于预测的随机森林 + 用于残差校正的ARIMA 使用扩展窗口交叉验证的时间感知验证 通过SHAP分析实现模型可解释性。