Suppr超能文献

利用人工神经网络模型进行空气污染预测。

Air pollution prediction by using an artificial neural network model.

作者信息

Maleki Heidar, Sorooshian Armin, Goudarzi Gholamreza, Baboli Zeynab, Birgani Yaser Tahmasebi, Rahmati Mojtaba

机构信息

Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Environmental Engineering, School of Water Sciences Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

出版信息

Clean Technol Environ Policy. 2019 Aug;21(6):1341-1352. doi: 10.1007/s10098-019-01709-w. Epub 2019 May 28.

Abstract

Air pollutants impact public health, socioeconomics, politics, agriculture, and the environment. The objective of this study was to evaluate the ability of an artificial neural network (ANN) algorithm to predict hourly criteria air pollutant concentrations and two air quality indices, air quality index (AQI) and air quality health index (AQHI), for Ahvaz, Iran, over one full year (August 2009-August 2010). Ahvaz is known to be one of the most polluted cities in the world, mainly owing to dust storms. The applied algorithm involved nine factors in the input stage (five meteorological parameters, pollutant concentrations 3 and 6 h in advance, time, and date), 30 neurons in the hidden phase, and finally one output in last level. When comparing performance between using 5% and 10% of data for validation and testing, the more reliable results were from using 5% of data for these two stages. For all six criteria pollutants examined (O, NO, PM, PM, SO, and CO) across four sites, the correlation coefficient () and root-mean square error (RMSE) values when comparing predictions and measurements were 0.87 and 59.9, respectively. When comparing modeled and measured AQI and AQHI, was significant for three sites through AQHI, while AQI was significant only at one site. This study demonstrates that ANN has applicability to cities such as Ahvaz to forecast air quality with the purpose of preventing health effects. We conclude that authorities of urban air quality, practitioners, and decision makers can apply ANN to estimate spatial-temporal profile of pollutants and air quality indices. Further research is recommended to compare the efficiency and potency of ANN with numerical, computational, and statistical models to enable managers to select an appropriate toolkit for better decision making in field of urban air quality.

摘要

空气污染物会影响公众健康、社会经济、政治、农业和环境。本研究的目的是评估人工神经网络(ANN)算法预测伊朗阿瓦士一整年(2009年8月至2010年8月)每小时的标准空气污染物浓度以及两个空气质量指数——空气质量指数(AQI)和空气质量健康指数(AQHI)的能力。阿瓦士是世界上污染最严重的城市之一,主要原因是沙尘暴。所应用的算法在输入阶段涉及九个因素(五个气象参数、提前3小时和6小时的污染物浓度、时间和日期),隐藏层有30个神经元,最后一层有一个输出。在比较使用5%和10%的数据进行验证和测试时的性能时,这两个阶段使用5%的数据得到的结果更可靠。对于四个监测点所检测的所有六种标准污染物(O、NO、PM、PM、SO和CO),预测值与测量值比较时的相关系数()和均方根误差(RMSE)分别为0.87和59.9。在比较AQI和AQHI的模拟值与测量值时,通过AQHI在三个监测点相关性显著,而AQI仅在一个监测点显著。本研究表明,人工神经网络适用于阿瓦士这样的城市,以预测空气质量,预防对健康的影响。我们得出结论,城市空气质量管理部门、从业者和决策者可以应用人工神经网络来估计污染物的时空分布和空气质量指数。建议进一步开展研究,将人工神经网络与数值模型、计算模型和统计模型的效率和效能进行比较,以便管理者能够选择合适的工具集,在城市空气质量领域做出更好的决策。

相似文献

1
Air pollution prediction by using an artificial neural network model.
Clean Technol Environ Policy. 2019 Aug;21(6):1341-1352. doi: 10.1007/s10098-019-01709-w. Epub 2019 May 28.
2
AQI prediction using layer recurrent neural network model: a new approach.
Environ Monit Assess. 2023 Sep 10;195(10):1180. doi: 10.1007/s10661-023-11646-3.
3
Air pollution characteristics and human health risks in key cities of northwest China.
J Environ Manage. 2020 Sep 1;269:110791. doi: 10.1016/j.jenvman.2020.110791. Epub 2020 May 24.
5
Temporal profiles of ambient air pollutants and associated health outcomes in two polluted cities of the Middle East.
J Environ Health Sci Eng. 2022 Jan 13;20(1):347-361. doi: 10.1007/s40201-021-00781-z. eCollection 2022 Jun.
7
Temporal and spatial statistical analysis of ambient air quality of Assam (India).
J Air Waste Manag Assoc. 2020 Aug;70(8):775-794. doi: 10.1080/10962247.2020.1772406.
8
Improved morbidity-based air quality health index development using Bayesian multi-pollutant weighted model.
Environ Res. 2022 Mar;204(Pt D):112397. doi: 10.1016/j.envres.2021.112397. Epub 2021 Nov 17.
10
Concentrations and health effects of short- and long-term exposure to PM, NO, and O in ambient air of Ahvaz city, Iran (2014-2017).
Ecotoxicol Environ Saf. 2019 Sep 30;180:542-548. doi: 10.1016/j.ecoenv.2019.05.026. Epub 2019 May 22.

引用本文的文献

2
Explainable forecasting of air quality index using a hybrid random forest and ARIMA model.
MethodsX. 2025 Jul 18;15:103517. doi: 10.1016/j.mex.2025.103517. eCollection 2025 Dec.
6
An enhanced approach for predicting air pollution using quantum support vector machine.
Sci Rep. 2024 Aug 22;14(1):19521. doi: 10.1038/s41598-024-69663-2.
8
Estimating PM utilizing multiple linear regression and ANN techniques.
Sci Rep. 2023 Dec 19;13(1):22578. doi: 10.1038/s41598-023-49717-7.
9
Prediction of Pollutant Concentration Based on Spatial-Temporal Attention, ResNet and ConvLSTM.
Sensors (Basel). 2023 Oct 31;23(21):8863. doi: 10.3390/s23218863.
10
A Review of Artificial Neural Network Models Applied to Predict Indoor Air Quality in Schools.
Int J Environ Res Public Health. 2023 Jul 25;20(15):6441. doi: 10.3390/ijerph20156441.

本文引用的文献

1
Sigmoid-weighted linear units for neural network function approximation in reinforcement learning.
Neural Netw. 2018 Nov;107:3-11. doi: 10.1016/j.neunet.2017.12.012. Epub 2018 Jan 11.
3
Assessment of resident's exposure level and health economic costs of PM10 in Beijing from 2008 to 2012.
Sci Total Environ. 2016 Sep 1;563-564:557-65. doi: 10.1016/j.scitotenv.2016.03.215. Epub 2016 May 4.
5
Spatiotemporal distribution and short-term trends of particulate matter concentration over China, 2006-2010.
Environ Sci Pollut Res Int. 2014;21(16):9665-75. doi: 10.1007/s11356-014-2996-3. Epub 2014 May 15.
6
Desert dust and human health disorders.
Environ Int. 2014 Feb;63:101-13. doi: 10.1016/j.envint.2013.10.011. Epub 2013 Nov 26.
7
Neural network model for the prediction of PM10 daily concentrations in two sites in the Western Mediterranean.
Sci Total Environ. 2013 Oct 1;463-464:875-83. doi: 10.1016/j.scitotenv.2013.06.093. Epub 2013 Jul 17.
8
Health impact assessment of air pollution in megacity of Tehran, Iran.
Iranian J Environ Health Sci Eng. 2012 Dec 17;9(1):28. doi: 10.1186/1735-2746-9-28.
10
Assessment of PM10 enhancement by yellow sand on the air quality of Taipei, Taiwan in 2001.
Environ Monit Assess. 2007 Sep;132(1-3):297-309. doi: 10.1007/s10661-006-9534-9. Epub 2006 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验