Suppr超能文献

深度不确定性下洪水风险适应的两阶段稳健决策框架(2S-RDM)

A two-stage robust decision-making framework (2S-RDM) for flood risk adaptation under deep uncertainty.

作者信息

Cai Jiacong, Wei Yiding, Yang Jianxun, Ji Chenyi, Liu Miaomiao, Fang Wen, Ma Zongwei, Bi Jun

机构信息

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210044, China.

Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044, China.

出版信息

Fundam Res. 2024 May 23;5(4):1771-1780. doi: 10.1016/j.fmre.2024.05.005. eCollection 2025 Jul.

Abstract

Flood is one of the major challenges facing human societies. Adapting to future flood risks involves deep uncertainty, especially when long-term projections of climate change are considered. This study proposed a Two-stage Robust Decision Making (2S-RDM) framework to help devise flexible and robust strategies capable of addressing the inherent deep uncertainty associated with managing flood risks. Taking the Yangtze River Basin in China as a case study, we simulated flood risks across ∼0.6 million scenarios until 2050. This analysis considered four types of uncertain factors, i.e., future climate change, socio-economic growth, industrial structure transformation, and population aging. We then examined the effectiveness of four adaptation measures and their combinations, i.e. building elevation, tunnel construction, people relocation, and river basin conservation. Our projections show that without immediate adaptation, an estimated 0.9 to 27.3 million people will be impacted by floods until 2050, accompanied with $33.8 to $198.5 billion economic losses in the entire basin. When defining the goal as limiting the affected population < 0.05% and ensuring economic losses < 0.02%, we identified 24 global robust strategies capable of meeting this criterion in > 80% of scenarios. Then, we compared the 24 global robust strategies regarding their relative costs and performances in each of the future scenario pools. The final recommended solutions are hybrid strategies that integrate engineering-based measures with 'soft' adaptation options (e.g. Elevation++, Tunnel++, and Relocation). This study provides tools to design flood adaptation strategies not only robust across diverse scenarios but also flexible for decision-makers to customize and refine their strategies based on specific needs.

摘要

洪水是人类社会面临的主要挑战之一。适应未来洪水风险存在深度不确定性,尤其是在考虑气候变化的长期预测时。本研究提出了一种两阶段稳健决策(2S-RDM)框架,以帮助制定灵活且稳健的策略,能够应对与洪水风险管理相关的内在深度不确定性。以中国长江流域为例,我们模拟了到2050年约60万个情景下的洪水风险。该分析考虑了四种不确定因素,即未来气候变化、社会经济增长、产业结构转型和人口老龄化。然后,我们考察了四种适应措施及其组合的有效性,即建筑抬高、隧道建设、人员搬迁和流域保护。我们的预测表明,如果不立即采取适应措施,到2050年估计有90万至2730万人将受到洪水影响,整个流域将伴随338亿至1985亿美元的经济损失。当将目标定义为将受影响人口限制在<0.05%并确保经济损失<0.02%时,我们确定了24种全球稳健策略,能够在超过80%的情景中满足这一标准。然后,我们比较了这24种全球稳健策略在每个未来情景池中的相对成本和表现。最终推荐的解决方案是将基于工程的措施与“软性”适应选项(如抬高++、隧道++和搬迁)相结合的混合策略。本研究提供了工具,用于设计不仅在不同情景中稳健而且灵活的洪水适应策略,以便决策者根据具体需求定制和完善他们的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ae/12327869/b06053d73b68/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验