Assaf Jad F, Ahuja Abhimanyu S, Kannan Vishnu, Yazbeck Hady, Krivit Jenna, Redd Travis K
Casey Eye Institute, Oregon Health & Science University, Portland, Oregon.
KeraLink International, Baltimore, Maryland.
Ophthalmol Sci. 2025 Jun 19;5(6):100861. doi: 10.1016/j.xops.2025.100861. eCollection 2025 Nov-Dec.
Corneal ulcers cause preventable blindness in >2 million individuals annually, primarily affecting low- and middle-income countries. Prompt and accurate pathogen identification is essential for targeted antimicrobial treatment, yet current diagnostic methods are costly and slow and require specialized expertise, limiting accessibility.
We systematically reviewed literature published from 2017 to 2024, identifying 37 studies that developed or validated artificial intelligence (AI) models for pathogen detection and related classification tasks in infectious keratitis. The studies were analyzed for model types, input modalities, datasets, ground truth determination methods, and validation practices.
Artificial intelligence models demonstrated promising accuracy in pathogen detection using image interpretation techniques. Common limitations included limited generalizability, lack of diverse datasets, absence of multilabeled classification methods, and variability in ground truth standards. Most studies relied on single-center retrospective datasets, limiting applicability in routine clinical practice.
Artificial intelligence shows significant potential to improve pathogen detection in infectious keratitis, enhancing both diagnostic accuracy and accessibility globally. Future research should address identified limitations by increasing dataset diversity, adopting multilabel classification, implementing prospective and multicenter validations, and standardizing ground truth definitions.
Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
角膜溃疡每年导致超过200万人失明,这些失明本可预防,主要影响低收入和中等收入国家。及时准确地鉴定病原体对于针对性抗菌治疗至关重要,但目前的诊断方法成本高昂、速度缓慢,且需要专业知识,限制了其可及性。
我们系统回顾了2017年至2024年发表的文献,确定了37项研究,这些研究开发或验证了用于感染性角膜炎病原体检测及相关分类任务的人工智能(AI)模型。对这些研究的模型类型、输入方式、数据集、金标准确定方法和验证实践进行了分析。
人工智能模型在使用图像解释技术进行病原体检测方面显示出有前景的准确性。常见局限性包括泛化性有限、缺乏多样的数据集、没有多标签分类方法以及金标准的变异性。大多数研究依赖单中心回顾性数据集,限制了其在常规临床实践中的适用性。
人工智能在提高感染性角膜炎病原体检测方面显示出巨大潜力,可提高全球诊断准确性和可及性。未来研究应通过增加数据集多样性、采用多标签分类、实施前瞻性和多中心验证以及标准化金标准定义来解决已发现的局限性。
本文末尾的脚注和披露中可能会找到专有或商业披露信息。