Fioretti S, Germani A, Leo T
J Biomech. 1985;18(11):831-42. doi: 10.1016/0021-9290(85)90480-4.
In this paper a stereophotogrammetric algorithm based on a black-box approach to the modelling of object to image spaces relationship is proposed. The algorithm is well suited for 'very close-range photogrammetry', with respect to experiments in which the measurement field is 0.5 X 0.5 X 0.5 m or smaller, as in the analysis of a few or small body segments movements. The attainable accuracy is high, better than 0.1% of the observation distance. Non-professional and even different cameras can be used. Consequently an inexpensive experimental set-up can be realized. A very simple, cheap and easily usable calibration object is needed. Computation time for the reconstruction of object-space co-ordinates of point body landmarks is one order of magnitude lower than in the case of the Direct Linear Transformation (DLT) (Abdel Aziz and Karara, Proceedings of the ASP/U1 Symposium on Close-Range Photogrammetry, pp. 1-18. American Society of Photogrammetry, 1971; Marzan and Karara, Proceedings of the Symposium on close-range Photogrammetric Systems, pp. 420-467. American Society of Photogrammetry, 1975). Computation time for calibration is two-fold in respect of the DLT. An example of application to the recording of the movements of the index finger with respect to the metacarpophalangeal joint is given.