Santha Bhaskaran Athul, Osuna Sílvia, Swart Marcel
Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona Parc R+i Univ. Girona, Ed. Monturiol, c/ Emili Grahit 91, 17003 Girona, Spain.
ICREA Pg. Lluís Companys 23, 08010 Barcelona, Spain.
J Phys Chem A. 2025 Aug 21;129(33):7609-7616. doi: 10.1021/acs.jpca.5c02438. Epub 2025 Aug 8.
A systematic analysis for the determination of the optimum fullerene cage for encapsulation of xenon dimers was carried out using density functional theory and activation strain analysis. Our calculations indicate that tubular-like fullerenes are better candidates for the encapsulation of xenon atoms. However, the tubular-like structure should have at least a diameter that is proportional to the van der Waals radius of encapsulated atoms. Our calculations indicate that the smallest fullerene that can stabilize the encapsulation of the xenon dimers in an energetically favorable dimeric state is Xe@C ([10,0] C-(10766)). When going to higher order fullerenes, the dispersion interaction will dominate over all other interactions. However, the additional space provided by the tubular-like fullerene leads to elongation of the distance between the encapsulated xenon atoms, thus hampering the formation of a xenon-xenon chemical bond.
利用密度泛函理论和活化应变分析,对确定用于封装氙二聚体的最佳富勒烯笼进行了系统分析。我们的计算表明,管状富勒烯是封装氙原子的更好候选者。然而,管状结构的直径至少应与被封装原子的范德华半径成比例。我们的计算表明,能够以能量有利的二聚体状态稳定封装氙二聚体的最小富勒烯是Xe@C([10,0]C-(10766))。当考虑更高阶的富勒烯时,色散相互作用将主导所有其他相互作用。然而,管状富勒烯提供的额外空间会导致被封装氙原子之间的距离拉长,从而阻碍氙-氙化学键的形成。