Yang Haimin, Li Wei, Gao Yanni, Zhong Guangtao, Wang Hongqi, Han Yongqin
Shandong Key Laboratory of Special Epoxy Resin, School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
Shandong Key Laboratory of Special Epoxy Resin, School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
J Colloid Interface Sci. 2025 Dec 15;700(Pt 3):138617. doi: 10.1016/j.jcis.2025.138617. Epub 2025 Aug 5.
Interfacial solar desalination has emerged as a sustainable pathway for treating high-salinity brines, but the non-equilibrium phase transition at the evaporation frontier inevitably induces self-amplifying crystallization to reduce purification efficiency. Herein, a hierarchically aligned reduced graphene oxide/MXene (Mr) foam is fabricated to optimize ion transport channels while reducing optical scattering interfaces that enhance solar energy utilization. The aligned layered structure with interconnected anisotropic microchannels is built under dual temperature gradients with the ice crystal exclusion, which significantly shortens the water transport path and facilitates diffusion and reflux of salt ions. The finite element simulations validate the exceptional photon-to-thermal energy efficiency of Mr foam coupled with inherently low thermal conductivity, synergistically suppressing heat dissipation through thermal localization strategy. The steep thermal gradient originating from the liquid-vapor interface propagates through the subsurface aqueous phase, establishing a localized surface tension differential that activates spontaneous Marangoni convection currents, which drives self-sustaining hydrodynamic patterns to suppress salt accumulation. Consequently, the Mr foam achieves a water evaporation rate of 2.04 kg m h under 1 sun irradiation. Importantly, it maintains a stable evaporation rate of 1.76 kg m h over 100 h in 25 wt% NaCl solution, which demonstrates a great potential for efficient and long-term solar desalination.
界面太阳能淡化已成为处理高盐卤水的可持续途径,但蒸发前沿的非平衡相变不可避免地会引发自增强结晶,从而降低净化效率。在此,制备了一种分级排列的还原氧化石墨烯/碳化钛(Mr)泡沫,以优化离子传输通道,同时减少增强太阳能利用的光散射界面。在双温度梯度和冰晶排斥作用下构建了具有相互连接的各向异性微通道的排列层状结构,这显著缩短了水的传输路径,并促进了盐离子的扩散和回流。有限元模拟验证了Mr泡沫卓越的光子到热能转换效率以及其固有的低热导率,通过热局域化策略协同抑制了热耗散。源自液 - 气界面的陡峭热梯度通过地下含水相传播,建立了局部表面张力差,从而激活自发的马兰戈尼对流,驱动自持流体动力学模式以抑制盐积累。因此,Mr泡沫在1个太阳光照下实现了2.04 kg m⁻² h⁻¹的水蒸发速率。重要的是,它在25 wt%的NaCl溶液中100小时内保持1.76 kg m⁻² h⁻¹的稳定蒸发速率,这展示了其在高效长期太阳能淡化方面的巨大潜力。