Su Qin, Wu Haidi, Hou Suyang, Ye Liping, Feng Yifan, Lu Longjuan, Pan Biwang, Gu Wancheng, Tang Longcheng, Huang Xuewu, Xue Huaiguo, Gao Jiefeng
School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Building 22, Qinyuan, No.2318, Yuhangtang Road, Cangqian Street, Yuhang District, Hangzhou, 311121, P. R. China.
Adv Sci (Weinh). 2025 Aug;12(30):e05944. doi: 10.1002/advs.202505944. Epub 2025 May 20.
Enhancing interfacial evaporation rates and optimizing energy utilization remain critical challenges in solar-driven steam generation. Natural fiber@MXene-engineered chitosan aerogels with hierarchically oriented channels to achieve high-efficiency solar-driven steam generation are developed. The kapok fiber@MXene core-shell units (MKFs) construct photon-entrapping topological networks that enhance light absorption while simultaneously reinforcing the aerogel's structural integrity and durability for practical applications. The aerogel's oriented microchannels establish thermodynamic potential gradients, facilitating spontaneous capillary-driven water replenishment and environmental thermal harvesting. Both experimental results and COMSOL multiphysics simulations systematically demonstrate that hierarchical pore channels enhance water transport, improve solar-thermal/environmental energy synergy, and promote the downward diffusion of concentrated ions from the evaporation surface, achieving an evaporation rate up to 4.40 kg m h with efficient salt rejection. Long-term outdoor tests with various corrosive wastewater solutions further validate the aerogel's durability in solar-driven interfacial evaporation. This study provides a theoretical foundation for understanding the interrelation between solar energy absorption, water transport, and salt diffusion in aerogel evaporators with hierarchical fiber-pore architectures.
提高界面蒸发速率和优化能源利用仍然是太阳能驱动蒸汽产生领域的关键挑战。我们开发了具有分层定向通道的天然纤维@MXene工程化壳聚糖气凝胶,以实现高效的太阳能驱动蒸汽产生。木棉纤维@MXene核壳单元(MKFs)构建了捕获光子的拓扑网络,增强了光吸收,同时增强了气凝胶的结构完整性和耐用性,以用于实际应用。气凝胶的定向微通道建立了热力学势梯度,促进了自发的毛细管驱动的水补充和环境热收集。实验结果和COMSOL多物理场模拟均系统地表明,分层孔隙通道增强了水传输,改善了太阳能-热/环境能量协同作用,并促进了浓缩离子从蒸发表面向下扩散,在高效拒盐的情况下实现了高达4.40 kg m⁻² h⁻¹的蒸发速率。使用各种腐蚀性废水溶液进行的长期户外测试进一步验证了气凝胶在太阳能驱动界面蒸发中的耐用性。本研究为理解具有分层纤维-孔隙结构的气凝胶蒸发器中太阳能吸收、水传输和盐扩散之间的相互关系提供了理论基础。