Yang Haonan, Shi Tianhao, Dong Jing, Zhang Ting, Li Yaning, Guo Yingying, Yuan Yafei, Yang Liuqing, Dong Jin-Tang, Yan Renhong
Department of Biochemistry, SUSTech Homeostatic Medicine Institute, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China.
Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
J Biol Chem. 2025 Sep;301(9):110569. doi: 10.1016/j.jbc.2025.110569. Epub 2025 Aug 6.
The -type amino acid transporter 1 (LAT1), in complex with its ancillary protein 4F2hc, mediates the sodium-independent antiport of large neutral amino acids across the plasma membrane. LAT1 preferentially transports substrates, such as -leucine, -tyrosine, and -tryptophan, thyroid hormones, and drugs like 3,4-dihydroxyphenylalanine. Its pivotal role in cancer development and progression has established LAT1 as a promising therapeutic target. While prior studies have resolved the LAT1-4F2hc architecture and inhibitor interactions, the molecular basis of LAT1 substrate selectivity remains elusive. Here, we present the cryo-EM structures of LAT1-4F2hc bound to -tyrosine, -tryptophan, -leucine, and 3,4-dihydroxyphenylalanine, revealing distinct substrate binding modes. Comparative structural analysis highlights differences between LAT1 and LAT2 in substrate coordination, driven by key residues near the binding pocket that influence transport efficiency. These findings advance our mechanistic understanding of the LAT1-4F2hc complex and provide valuable insights for structure-based drug design targeting LAT1.
-型氨基酸转运体1(LAT1)与其辅助蛋白4F2hc形成复合体,介导大中性氨基酸不依赖钠的跨质膜反向转运。LAT1优先转运底物,如 -亮氨酸、 -酪氨酸和 -色氨酸、甲状腺激素以及3,4 -二羟基苯丙氨酸等药物。其在癌症发生和发展中的关键作用已使LAT1成为一个有前景的治疗靶点。虽然先前的研究解析了LAT1 - 4F2hc的结构以及抑制剂相互作用,但LAT1底物选择性的分子基础仍然难以捉摸。在此,我们展示了LAT1 - 4F2hc与 -酪氨酸、 -色氨酸、 -亮氨酸和3,4 -二羟基苯丙氨酸结合的冷冻电镜结构,揭示了不同的底物结合模式。比较结构分析突出了LAT1和LAT2在底物配位方面的差异,这是由结合口袋附近影响转运效率的关键残基驱动的。这些发现推进了我们对LAT1 - 4F2hc复合体机制的理解,并为针对LAT1的基于结构的药物设计提供了有价值的见解。