Yang Tingting, Wang Yiwei, Zhu Guangyu, Liu Wei, Cao Jingyi, Liu Yuanzhang, Lu Fanglin, Yang Jian
School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, China.
Department of Cardiac Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
Int J Cardiol. 2025 Dec 15;441:133732. doi: 10.1016/j.ijcard.2025.133732. Epub 2025 Aug 6.
Efficient and accurate preoperative assessment of the right-sided heart structural complex (RSHSc) is crucial for planning transcatheter tricuspid valve replacement (TTVR). However, current manual methods remain time-consuming and inconsistent. To address this unmet clinical need, this study aimed to develop and validate TRI-PLAN, the first fully automated, deep learning (DL)-based framework for pre-TTVR assessment.
A total of 140 preprocedural computed tomography angiography (CTA) scans (63,962 slices) from patients with severe tricuspid regurgitation (TR) at two high-volume cardiac centers in China were retrospectively included. The patients were divided into a training cohort (n = 100), an internal validation cohort (n = 20), and an external validation cohort (n = 20). TRI-PLAN was developed by a dual-stage right heart assessment network (DRA-Net) to segment the RSHSc and localize the tricuspid annulus (TA), followed by automated measurement of key anatomical parameters and right ventricular ejection fraction (RVEF). Performance was comprehensively evaluated in terms of accuracy, interobserver benchmark comparison, clinical usability, and workflow efficiency.
TRI-PLAN achieved expert-level segmentation accuracy (volumetric Dice 0.952/0.955; surface Dice 0.934/0.940), precise localization (standard deviation 1.18/1.14 mm), excellent measurement agreement (ICC 0.984/0.979) and reliable RVEF evaluation (R = 0.97, bias<5 %) across internal and external cohorts. In addition, TRI-PLAN obtained a direct acceptance rate of 80 % and reduced total assessment time from 30 min manually to under 2 min (>95 % time saving).
TRI-PLAN provides an accurate, efficient, and clinically applicable solution for pre-TTVR assessment, with strong potential to streamline TTVR planning and enhance procedural outcomes.
对右侧心脏结构复合体(RSHSc)进行高效、准确的术前评估对于经导管三尖瓣置换术(TTVR)的手术规划至关重要。然而,目前的手动方法仍然耗时且不一致。为满足这一未被满足的临床需求,本研究旨在开发并验证TRI-PLAN,这是首个基于深度学习(DL)的、用于TTVR术前评估的全自动框架。
回顾性纳入中国两家高容量心脏中心的140例严重三尖瓣反流(TR)患者的术前计算机断层扫描血管造影(CTA)扫描(63,962层)。患者被分为训练队列(n = 100)、内部验证队列(n = 20)和外部验证队列(n = 20)。TRI-PLAN由一个双阶段右心评估网络(DRA-Net)开发,用于分割RSHSc并定位三尖瓣环(TA),随后自动测量关键解剖参数和右心室射血分数(RVEF)。从准确性、观察者间基准比较、临床可用性和工作流程效率方面对性能进行全面评估。
TRI-PLAN在内部和外部队列中均实现了专家级的分割准确性(体积骰子系数0.952/0.955;表面骰子系数0.934/0.940)、精确的定位(标准差1.18/1.14毫米)、出色的测量一致性(组内相关系数0.984/0.979)以及可靠的RVEF评估(R = 0.97,偏差<5%)。此外,TRI-PLAN的直接接受率为80%,并将总评估时间从手动的30分钟减少至2分钟以内(节省时间>95%)。
TRI-PLAN为TTVR术前评估提供了一种准确、高效且临床适用的解决方案,在简化TTVR规划和改善手术结果方面具有巨大潜力。