Suppr超能文献

复杂细菌菌落形态的生物物理代谢建模

Biophysical metabolic modeling of complex bacterial colony morphology.

作者信息

Dukovski Ilija, Golden Lauren, Zhang Jing, Osborne Melisa, Segrè Daniel, Korolev Kirill S

机构信息

Bioinformatics Program, Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA; Biological Design Center, Boston University, Boston, MA, USA; Center for Advanced Interdisciplinary Research, Ss. Cyril and Methodius University, Skopje, North Macedonia.

Broad Institute, Cambridge, MA, USA; Department of Physics, Boston University, Boston, MA, USA.

出版信息

Cell Syst. 2025 Aug 20;16(8):101352. doi: 10.1016/j.cels.2025.101352. Epub 2025 Aug 8.

Abstract

Microbial colony growth is shaped by the physics of biomass propagation and nutrient diffusion and by the metabolic reactions that organisms activate as a function of the surrounding environment. While microbial colonies have been explored using minimal models of growth and motility, full integration of biomass propagation and metabolism is still lacking. Here, building upon our framework for computation of microbial ecosystems in time and space (COMETS), we combine dynamic flux balance modeling of metabolism with collective biomass propagation and demographic fluctuations to provide nuanced simulations of E. coli colonies. Simulations produced realistic colony morphology, consistent with our experiments. They characterize the transition between smooth and furcated colonies and the decay of genetic diversity. Furthermore, we demonstrate that under certain conditions, biomass can accumulate along "metabolic rings" that are reminiscent of coffee-stain rings but have a completely different origin. Our approach is a key step toward predictive microbial ecosystems modeling. A record of this paper's transparent peer review process is included in the supplemental information.

摘要

微生物菌落的生长受到生物量传播和营养物质扩散的物理过程以及生物体根据周围环境激活的代谢反应的影响。虽然已经使用生长和运动的最小模型对微生物菌落进行了探索,但生物量传播和代谢的完全整合仍然缺乏。在此,基于我们在时间和空间上计算微生物生态系统的框架(COMETS),我们将代谢的动态通量平衡建模与集体生物量传播和种群统计学波动相结合,以提供对大肠杆菌菌落的细致模拟。模拟产生了与我们的实验一致的真实菌落形态。它们表征了光滑菌落和分叉菌落之间的转变以及遗传多样性的衰减。此外,我们证明在某些条件下,生物量可以沿着“代谢环”积累,这些代谢环让人联想到咖啡渍环,但起源完全不同。我们的方法是迈向预测性微生物生态系统建模的关键一步。本文透明同行评审过程的记录包含在补充信息中。

相似文献

1
Biophysical metabolic modeling of complex bacterial colony morphology.复杂细菌菌落形态的生物物理代谢建模
Cell Syst. 2025 Aug 20;16(8):101352. doi: 10.1016/j.cels.2025.101352. Epub 2025 Aug 8.
5
Fluid-derived lattices for unbiased modeling of bacterial colony growth.用于细菌菌落生长无偏建模的流体衍生晶格
PLoS One. 2025 Aug 28;20(8):e0330491. doi: 10.1371/journal.pone.0330491. eCollection 2025.
9
The biophysical basis of bacterial colony growth.细菌菌落生长的生物物理基础。
Nat Phys. 2024 Sep;20(9):1509-1517. doi: 10.1038/s41567-024-02572-3. Epub 2024 Jul 9.

本文引用的文献

5
Proliferating active matter.增殖活性物质。
Nat Rev Phys. 2023 May 31:1-13. doi: 10.1038/s42254-023-00593-0.
7
Vertical growth dynamics of biofilms.生物膜的垂直生长动态。
Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2214211120. doi: 10.1073/pnas.2214211120. Epub 2023 Mar 7.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验