Voigtlaender Sebastian, Nelson Thomas A, Karschnia Philipp, Vaios Eugene J, Kim Michelle M, Lohmann Philipp, Galldiks Norbert, Filbin Mariella G, Azizi Shekoofeh, Natarajan Vivek, Monje Michelle, Dietrich Jorg, Winter Sebastian F
Virtual Diagnostics Unit, QuantCo, Cambridge, MA, USA; Max Planck Institute for Biological Cybernetics, Systems Neuroscience Division, Tübingen, Germany.
Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Clinical Neurology and Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
Lancet Digit Health. 2025 Aug 8:100876. doi: 10.1016/j.landig.2025.100876.
CNS cancers are complex, difficult-to-treat malignancies that remain insufficiently understood and mostly incurable, despite decades of research efforts. Artificial intelligence (AI) is poised to reshape neuro-oncological practice and research, driving advances in medical image analysis, neuro-molecular-genetic characterisation, biomarker discovery, therapeutic target identification, tailored management strategies, and neurorehabilitation. This Review examines key opportunities and challenges associated with AI applications along the neuro-oncological care trajectory. We highlight emerging trends in foundation models, biophysical modelling, synthetic data, and drug development and discuss regulatory, operational, and ethical hurdles across data, translation, and implementation gaps. Near-term clinical translation depends on scaling validated AI solutions for well defined clinical tasks. In contrast, more experimental AI solutions offer broader potential but require technical refinement and resolution of data and regulatory challenges. Addressing both general and neuro-oncology-specific issues is essential to unlock the full potential of AI and ensure its responsible, effective, and needs-based integration into neuro-oncological practice.
中枢神经系统(CNS)癌症是复杂且难以治疗的恶性肿瘤,尽管经过数十年的研究努力,但人们对其仍了解不足,且大多无法治愈。人工智能(AI)有望重塑神经肿瘤学的实践和研究,推动医学图像分析、神经分子遗传学特征分析、生物标志物发现、治疗靶点识别、个性化管理策略以及神经康复等方面的进展。本综述探讨了在神经肿瘤学护理过程中与AI应用相关的关键机遇和挑战。我们强调基础模型、生物物理建模、合成数据和药物开发等方面的新兴趋势,并讨论数据、转化和实施差距方面的监管、操作和伦理障碍。近期的临床转化取决于扩大针对明确临床任务的经过验证的AI解决方案。相比之下,更多实验性的AI解决方案具有更广泛的潜力,但需要技术改进以及解决数据和监管挑战。解决一般问题和神经肿瘤学特定问题对于释放AI的全部潜力并确保其负责任、有效且基于需求地融入神经肿瘤学实践至关重要。
Lancet Digit Health. 2025-8-8
J Med Internet Res. 2025-6-2
J Med Internet Res. 2025-7-29
J Med Internet Res. 2025-4-4
Acc Chem Res. 2025-6-17
Int J Radiat Oncol Biol Phys. 2024-10-1