Suppr超能文献

以用户为中心的设计在中枢神经系统肿瘤患者临床决策支持系统中利用可解释人工智能的现状与前景。

Current state and promise of user-centered design to harness explainable AI in clinical decision-support systems for patients with CNS tumors.

作者信息

Prince Eric W, Mirsky David M, Hankinson Todd C, Görg Carsten

机构信息

Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, United States.

Department of Biostatistics & Informatics, Colorado School of Public Health, Aurora, CO, United States.

出版信息

Front Radiol. 2025 Jan 13;4:1433457. doi: 10.3389/fradi.2024.1433457. eCollection 2024.

Abstract

In neuro-oncology, MR imaging is crucial for obtaining detailed brain images to identify neoplasms, plan treatment, guide surgical intervention, and monitor the tumor's response. Recent AI advances in neuroimaging have promising applications in neuro-oncology, including guiding clinical decisions and improving patient management. However, the lack of clarity on how AI arrives at predictions has hindered its clinical translation. Explainable AI (XAI) methods aim to improve trustworthiness and informativeness, but their success depends on considering end-users' (clinicians') specific context and preferences. User-Centered Design (UCD) prioritizes user needs in an iterative design process, involving users throughout, providing an opportunity to design XAI systems tailored to clinical neuro-oncology. This review focuses on the intersection of MR imaging interpretation for neuro-oncology patient management, explainable AI for clinical decision support, and user-centered design. We provide a resource that organizes the necessary concepts, including design and evaluation, clinical translation, user experience and efficiency enhancement, and AI for improved clinical outcomes in neuro-oncology patient management. We discuss the importance of multi-disciplinary skills and user-centered design in creating successful neuro-oncology AI systems. We also discuss how explainable AI tools, embedded in a human-centered decision-making process and different from fully automated solutions, can potentially enhance clinician performance. Following UCD principles to build trust, minimize errors and bias, and create adaptable software has the promise of meeting the needs and expectations of healthcare professionals.

摘要

在神经肿瘤学中,磁共振成像(MR成像)对于获取详细的脑部图像以识别肿瘤、规划治疗方案、指导手术干预以及监测肿瘤反应至关重要。神经影像学领域人工智能(AI)的最新进展在神经肿瘤学中具有广阔的应用前景,包括指导临床决策和改善患者管理。然而,AI如何得出预测结果尚不清楚,这阻碍了其临床应用。可解释人工智能(XAI)方法旨在提高可信度和信息量,但其成功取决于考虑终端用户(临床医生)的特定背景和偏好。以用户为中心的设计(UCD)在迭代设计过程中优先考虑用户需求,全程让用户参与,为设计适合临床神经肿瘤学的XAI系统提供了机会。本综述聚焦于神经肿瘤学患者管理的MR成像解读、临床决策支持的可解释人工智能以及以用户为中心的设计之间的交叉点。我们提供了一个资源,整理了必要的概念,包括设计与评估、临床应用、用户体验与效率提升以及用于改善神经肿瘤学患者管理临床结果的AI。我们讨论了多学科技能和以用户为中心的设计在创建成功的神经肿瘤学AI系统中的重要性。我们还讨论了可解释人工智能工具如何嵌入以人为主导的决策过程,且不同于完全自动化的解决方案,从而有可能提高临床医生的表现。遵循UCD原则来建立信任、最大限度减少错误和偏差并创建适应性强的软件有望满足医疗保健专业人员的需求和期望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30d4/11769936/1135b620ba6d/fradi-04-1433457-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验