基于杂环的羧甲基纤维素共轭物作为靶向HCT116、MCF7、PC3和A549细胞的新型抗癌剂的合成。

Synthesis of heterocycle based carboxymethyl cellulose conjugates as novel anticancer agents targeting HCT116, MCF7, PC3 and A549 cells.

作者信息

Mohamed-Ezzat Reham A, Elshahid Zeinab A, Gouhar Shaimaa A, Dacrory Sawsan

机构信息

Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt.

Medical Biochemistry Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt.

出版信息

Sci Rep. 2025 Aug 9;15(1):29196. doi: 10.1038/s41598-025-14146-1.

Abstract

Toward developing anticancer agents, heterocycle-based carboxymethyl cellulose conjugates have been synthesized. 2-Cyano-N'-(aryl/heteroarylethylidene)acetohydrazides and ethyl 2-cyano-3-(heteryl)acrylates were utilized as precursors for the synthesis of pyridine-based compounds. The chemical structures of the synthesized derivatives were characterized using various spectroscopic techniques, including H-, C-NMR, Fourier transform infrared spectroscopy (FTIR), as well as scanning electron microscopy (SEM).The anticancer effects of compounds on HCT-116, MCF-7, PC3 and A549 cancer cell lines were investigated and their cytotoxicity against RPE-1 normal cells was estimated to determine their safety. Compounds 4b and 7c exhibit high selectivity toward cancer cells while maintaining a strong safety margin for normal cells. The results demonstrated that the novel heterocycle-based carboxymethyl cellulose conjugates are promising and can be further evaluated as a potential therapeutic agent.

摘要

为了开发抗癌药物,已合成了基于杂环的羧甲基纤维素共轭物。2-氰基-N'-(芳基/杂芳基亚乙基)乙酰肼和2-氰基-3-(杂基)丙烯酸乙酯被用作合成吡啶类化合物的前体。使用各种光谱技术对合成衍生物的化学结构进行了表征,包括氢谱、碳谱、核磁共振谱、傅里叶变换红外光谱(FTIR)以及扫描电子显微镜(SEM)。研究了化合物对HCT-116、MCF-7、PC3和A549癌细胞系的抗癌作用,并评估了它们对RPE-1正常细胞的细胞毒性以确定其安全性。化合物4b和7c对癌细胞表现出高选择性,同时对正常细胞保持强大的安全边际。结果表明,新型基于杂环的羧甲基纤维素共轭物具有前景,可作为潜在治疗剂进一步评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0501/12335502/dbbb06a844f3/41598_2025_14146_Fig1_HTML.jpg

相似文献

本文引用的文献

[4]

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索