Najjar Elie, Khan Shahbaz, Masarwa Rawan, Sahota Opinder, Salem Khalid, Quraishi Nasir A
Centre for Spinal Studies and Surgery, Queens Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, NG7 2UH, UK, Centre for Spinal Studies and Surgery, Nottingham, United Kingdom.
Eur Spine J. 2025 Aug 9. doi: 10.1007/s00586-025-09228-7.
Retrospective diagnostic model development and validation study.
To develop and validate the NOVA (Nottingham Oncologic Vertebral Algorithm) Score, a pragmatic, surgeon-oriented tool for predicting 12-month survival in patients with metastatic spinal cord compression (MSCC), and to compare its performance to established prognostic scores and oncologist estimates.
Two independent cohorts of patients with MSCC referred for surgical consideration were included from a tertiary spine center: a derivation cohort (n = 184) and a validation cohort (n = 100). Feature selection was performed using random forest analysis, multivariable logistic regression, and permutation-based variable importance. The final NOVA Score incorporated three clinical parameters: Karnofsky Performance Status (KPS), primary tumor category, and presence of extraspinal metastases. The score ranges from 0 to 10, with a threshold of ≥ 7 used to predict > 12-month survival. Predictive performance was assessed using accuracy, F1-score, area under the receiver operating characteristic curve (AUC), Cohen's kappa, and calibration plots.
In the validation cohort, the NOVA Score achieved an accuracy of 71.0%, AUC of 0.693, F1-score of 47.3% for > 12-month survival, and Cohen's kappa of 0.28. Calibration plots showed good agreement in the mid-to-high probability range. Compared to the Revised Tokuhashi Score, OSRI, Modified Bauer Score, and oncologist estimates, NOVA demonstrated superior sensitivity for identifying long-term survivors using only three readily available variables.
The NOVA Score is a simple, reproducible tool for early prognostication in MSCC. Its minimal input requirements and balanced performance support its utility for surgical triage in multidisciplinary settings. Further external validation is warranted.
回顾性诊断模型开发与验证研究。
开发并验证诺瓦(诺丁汉肿瘤性椎体算法)评分,这是一种实用的、以外科医生为导向的工具,用于预测转移性脊髓压迫(MSCC)患者的12个月生存率,并将其性能与既定的预后评分和肿瘤学家的评估进行比较。
从一家三级脊柱中心纳入两个独立的因手术考虑而转诊的MSCC患者队列:一个推导队列(n = 184)和一个验证队列(n = 100)。使用随机森林分析、多变量逻辑回归和基于排列的变量重要性进行特征选择。最终的诺瓦评分纳入了三个临床参数:卡氏功能状态(KPS)、原发肿瘤类别和脊柱外转移的存在情况。该评分范围为0至10,阈值≥7用于预测生存期>12个月。使用准确性、F1分数、受试者操作特征曲线下面积(AUC)、科恩kappa系数和校准图评估预测性能。
在验证队列中,诺瓦评分在预测生存期>12个月时,准确率达到71.0%,AUC为0.693,F1分数为47.3%,科恩kappa系数为0.28。校准图显示在中高概率范围内具有良好的一致性。与修订的德桥评分、OSRI、改良鲍尔评分和肿瘤学家的评估相比,诺瓦评分仅使用三个易于获得的变量,在识别长期幸存者方面表现出更高的敏感性。
诺瓦评分是一种用于MSCC早期预后评估的简单、可重复的工具。其最低的输入要求和平衡的性能支持其在多学科环境中用于手术分流的效用。有必要进行进一步的外部验证。