Fountzilas Elena, Pearce Tillman, Baysal Mehmet A, Chakraborty Abhijit, Tsimberidou Apostolia M
Department of Medical Oncology, St Luke's Clinic, Panorama, Thessaloniki, Greece.
TCellCo, 415 De Haro Street, San Francisco, CA, USA.
NPJ Digit Med. 2025 Jan 31;8(1):75. doi: 10.1038/s41746-025-01471-y.
The confluence of new technologies with artificial intelligence (AI) and machine learning (ML) analytical techniques is rapidly advancing the field of precision oncology, promising to improve diagnostic approaches and therapeutic strategies for patients with cancer. By analyzing multi-dimensional, multiomic, spatial pathology, and radiomic data, these technologies enable a deeper understanding of the intricate molecular pathways, aiding in the identification of critical nodes within the tumor's biology to optimize treatment selection. The applications of AI/ML in precision oncology are extensive and include the generation of synthetic data, e.g., digital twins, in order to provide the necessary information to design or expedite the conduct of clinical trials. Currently, many operational and technical challenges exist related to data technology, engineering, and storage; algorithm development and structures; quality and quantity of the data and the analytical pipeline; data sharing and generalizability; and the incorporation of these technologies into the current clinical workflow and reimbursement models.
新技术与人工智能(AI)及机器学习(ML)分析技术的融合正在迅速推动精准肿瘤学领域的发展,有望改善癌症患者的诊断方法和治疗策略。通过分析多维度、多组学、空间病理学和放射组学数据,这些技术能够更深入地理解复杂的分子通路,有助于识别肿瘤生物学中的关键节点,以优化治疗选择。AI/ML在精准肿瘤学中的应用广泛,包括生成合成数据,例如数字孪生,以便提供必要信息来设计或加快临床试验的进行。目前,在数据技术、工程和存储;算法开发和结构;数据及分析流程的质量和数量;数据共享和通用性;以及将这些技术纳入当前临床工作流程和报销模式等方面,存在许多操作和技术挑战。