Li Yu-Jiong
School of Information, Shanxi University of Finance and Economics, 030000, Taiyuan, China.
Sci Rep. 2025 Aug 9;15(1):29146. doi: 10.1038/s41598-025-11129-0.
Crayfish Optimization Algorithm (COA) suffers from degradation of diversity, insufficient exploratory capability, a propensity to become caught in local optima, and an imprecise search engine for optimization. To address these issues, the current research introduces a hybrid strategy enhanced crayfish optimization algorithm (MSCOA). Initially, a chaotic inverse exploration initialization method is utilized to establish the population's position with high diversity, significantly enhancing the global exploration capability. Second, an adaptive t-distributed feeding strategy was employed to define the connection between feeding behavior and temperature, increasing population variety and enhanced the algorithm's local search effectiveness. Finally, an adaptive ternary optimization mechanism is introduced in the exploration phase: a curve growth acceleration factor is used to collaboratively guide global and individual optimal information, while a hybrid adaptive cosine exponential weigh dynamically adjusts the search intensity. Additionally, an inverse worst individual variant reinforcement approach is employed to enhance the population evolution efficiency. In the hybrid test sets of CEC2005 and CEC2019, MSCOA shows improved convergence accuracy compared to the traditional COA algorithm, and the Wilcoxon test (p < 0.05) confirms its superiority over five other comparison algorithms. MSCOA outperforms other algorithms in terms of robustness, convergence speed, and solution accuracy, although there is still room for further improvement. When combined with Extreme Learning Machine (ELM) and applied to the Wisconsin breast cancer dataset, the MSCOA-ELM model achieved 100% accuracy and F1 score, a 28.9% improvement over the baseline ELM, demonstrating the algorithm's efficiency and generalization ability in solving practical optimization problems.
小龙虾优化算法(COA)存在多样性退化、探索能力不足、容易陷入局部最优以及优化搜索引擎不精确等问题。为了解决这些问题,当前研究引入了一种混合策略增强小龙虾优化算法(MSCOA)。首先,利用混沌逆探索初始化方法来建立具有高多样性的种群位置,显著提高全局探索能力。其次,采用自适应t分布觅食策略来定义觅食行为与温度之间的联系,增加种群多样性并提高算法的局部搜索效率。最后,在探索阶段引入自适应三元优化机制:使用曲线增长加速因子协同引导全局和个体最优信息,同时采用混合自适应余弦指数权重动态调整搜索强度。此外,采用逆最差个体变异强化方法来提高种群进化效率。在CEC2005和CEC2019的混合测试集上,与传统COA算法相比,MSCOA显示出更高的收敛精度,并且威尔科克森检验(p < 0.05)证实了它相对于其他五种比较算法的优越性。尽管仍有进一步改进的空间,但MSCOA在鲁棒性、收敛速度和求解精度方面优于其他算法。当与极限学习机(ELM)结合并应用于威斯康星乳腺癌数据集时,MSCOA - ELM模型实现了100%的准确率和F1分数,比基线ELM提高了28.9%,证明了该算法在解决实际优化问题中的效率和泛化能力。