Zhang Qijian, Yang Wenzhao, Zhang Xinwei, Han Jinjin, Guo Yunxia, Lei Weining
College of Mechanical and Electrical Engineering, Quanzhou University of Information Engineering, Quanzhou, 362000, China.
College of Mechanical Engineering, Jiangsu University of Technology, Zhongwu Avenue 1801, Changzhou, 213001, China.
Sci Rep. 2025 Aug 9;15(1):29226. doi: 10.1038/s41598-025-14499-7.
Silicon carbide (SiC) ceramics hold significant application value in high-end fields such as semiconductors and aerospace due to their exceptional mechanical properties and thermal stability. Large-aspect-ratio (LAR) microgrooves in ceramics are crucial for enabling advanced functionalities in various applications, including microfluidic devices, microelectromechanical systems (MEMS), and thermal management systems, where precise control over fluid flow, structural integrity, and heat dissipation is required. However, their extreme hardness poses challenges for traditional mechanical machining, including low efficiency and severe tool wear, while laser machining is prone to defects such as heat-affected zones and recast layers. This study innovatively employs waterjet-assisted laser micromachining (WJALM), compared to conventional underwater laser micromachining (UWLM), WJALM reduces the recast layer and microcracks through the synergistic cooling and impact effects of the waterjet, while maintaining smaller surface roughness (reduce by 42%). Furthermore, this research systematically optimized the machining parameters for LAR microgrooves through orthogonal experiments and grey-relational analysis (GRA). Results identified an optimal parameter combination is a scanning speed of 800 mm/s, pulse energy of 27 W, and waterjet velocity of 16 m/s, high-quality microgrooves with an aspect-ratio (AR) of 3.66 and an ablation-area-ratio (AAR) of 0.78 can be achieved. This study provides a novel technical solution for the precision machining of hard and brittle materials, offering substantial engineering application value.
碳化硅(SiC)陶瓷因其优异的机械性能和热稳定性,在半导体和航空航天等高端领域具有重要的应用价值。陶瓷中的大长宽比(LAR)微槽对于实现各种应用中的先进功能至关重要,包括微流体装置、微机电系统(MEMS)和热管理系统,这些应用需要精确控制流体流动、结构完整性和散热。然而,其极高的硬度给传统机械加工带来了挑战,包括效率低和刀具磨损严重,而激光加工容易出现热影响区和重铸层等缺陷。本研究创新性地采用水射流辅助激光微加工(WJALM),与传统的水下激光微加工(UWLM)相比,WJALM通过水射流的协同冷却和冲击作用减少了重铸层和微裂纹,同时保持了更小的表面粗糙度(降低了42%)。此外,本研究通过正交试验和灰色关联分析(GRA)系统地优化了LAR微槽的加工参数。结果确定了最佳参数组合为扫描速度800 mm/s、脉冲能量27 W和水射流速度16 m/s,可实现长宽比(AR)为3.66、烧蚀面积比(AAR)为0.78的高质量微槽。本研究为硬脆材料的精密加工提供了一种新颖的技术解决方案,具有重要的工程应用价值。