Long Shengyu, Wang Wentong, Chen Yongcheng, Wang Zhihua, Duan Hao, Yuan Ping, Xu Yunrong, Li Denghui, Zhang Wan, Wang Weizhou, He Fei
Orthopedics, Qujing First People's Hospital, Qujing, Yunnan, 655000, China.
Trauma Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China.
BMC Biotechnol. 2025 Aug 9;25(1):80. doi: 10.1186/s12896-025-01017-w.
BACKGROUND: The repair of bone defects remains a significant clinical challenge. Although magnesium (Mg)-based biomimetic scaffolds are widely utilized for bone defect repair, the release of Mg²⁺ ions often leads to an alkaline microenvironment, thereby adversely affecting bone regeneration. Regenerative medicine strategies that leverage the recruitment of endogenous bone marrow mesenchymal stem cells (BMSCs) offer a novel approach to treating bone defects. METHODS: In this study, we employed poly(L-lactic acid) (PLLA) and polyethylene glycol (PEG) as shell materials and nanomagnesium oxide (nMgO) combined with gelatin (G) as core materials to fabricate coaxial fibre membranes with a "core‒shell" structure via coaxial electrospinning technology. Additionally, we grafted the BMSC-affinitive peptide E7 (EPLQLKM) onto the fibres to achieve specific recruitment of endogenous BMSCs. RESULTS: Morphological and structural analyses confirmed the successful formation of the "core‒shell" structure of the fibre membranes. Grafting E7 peptides enhanced the hydrophilicity and mechanical properties of the fibre membranes and maintained pH stability in vitro. In vitro experiments demonstrated that the functionalized fibre membranes significantly promoted BMSC proliferation, migration, and osteogenic differentiation. When implanted into a rat cranial defect model, we observed the formation of new bone tissue and the repair of the bone defect. CONCLUSIONS: E7 peptide-functionalized coaxial fibre membranes effectively facilitated bone defect repair by promoting the recruitment and osteogenic differentiation of BMSCs, demonstrating substantial potential for tissue engineering applications.
背景:骨缺损的修复仍然是一项重大的临床挑战。尽管镁(Mg)基仿生支架被广泛用于骨缺损修复,但Mg²⁺离子的释放常常导致碱性微环境,从而对骨再生产生不利影响。利用内源性骨髓间充质干细胞(BMSC)募集的再生医学策略为治疗骨缺损提供了一种新方法。 方法:在本研究中,我们采用聚(L-乳酸)(PLLA)和聚乙二醇(PEG)作为壳材料,纳米氧化镁(nMgO)与明胶(G)作为核材料,通过同轴静电纺丝技术制备具有“核-壳”结构的同轴纤维膜。此外,我们将BMSC亲和肽E7(EPLQLKM)接枝到纤维上,以实现内源性BMSC的特异性募集。 结果:形态学和结构分析证实纤维膜成功形成了“核-壳”结构。接枝E7肽增强了纤维膜的亲水性和机械性能,并在体外保持了pH稳定性。体外实验表明,功能化纤维膜显著促进了BMSC的增殖、迁移和成骨分化。当植入大鼠颅骨缺损模型时,我们观察到新骨组织的形成和骨缺损的修复。 结论:E7肽功能化的同轴纤维膜通过促进BMSC的募集和成骨分化有效地促进了骨缺损修复,显示出在组织工程应用中的巨大潜力。
Stem Cell Res Ther. 2024-7-2
Stem Cell Res Ther. 2024-7-18
ACS Appl Mater Interfaces. 2025-7-16
ACS Biomater Sci Eng. 2024-9-9
Stem Cell Res Ther. 2024-5-7