文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

E7肽与氧化镁功能化同轴纤维膜可增强骨髓间充质干细胞的募集并促进骨再生。

E7 peptide and magnesium oxide-functionalized coaxial fibre membranes enhance the recruitment of bone marrow mesenchymal stem cells and promote bone regeneration.

作者信息

Long Shengyu, Wang Wentong, Chen Yongcheng, Wang Zhihua, Duan Hao, Yuan Ping, Xu Yunrong, Li Denghui, Zhang Wan, Wang Weizhou, He Fei

机构信息

Orthopedics, Qujing First People's Hospital, Qujing, Yunnan, 655000, China.

Trauma Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China.

出版信息

BMC Biotechnol. 2025 Aug 9;25(1):80. doi: 10.1186/s12896-025-01017-w.


DOI:10.1186/s12896-025-01017-w
PMID:40783756
Abstract

BACKGROUND: The repair of bone defects remains a significant clinical challenge. Although magnesium (Mg)-based biomimetic scaffolds are widely utilized for bone defect repair, the release of Mg²⁺ ions often leads to an alkaline microenvironment, thereby adversely affecting bone regeneration. Regenerative medicine strategies that leverage the recruitment of endogenous bone marrow mesenchymal stem cells (BMSCs) offer a novel approach to treating bone defects. METHODS: In this study, we employed poly(L-lactic acid) (PLLA) and polyethylene glycol (PEG) as shell materials and nanomagnesium oxide (nMgO) combined with gelatin (G) as core materials to fabricate coaxial fibre membranes with a "core‒shell" structure via coaxial electrospinning technology. Additionally, we grafted the BMSC-affinitive peptide E7 (EPLQLKM) onto the fibres to achieve specific recruitment of endogenous BMSCs. RESULTS: Morphological and structural analyses confirmed the successful formation of the "core‒shell" structure of the fibre membranes. Grafting E7 peptides enhanced the hydrophilicity and mechanical properties of the fibre membranes and maintained pH stability in vitro. In vitro experiments demonstrated that the functionalized fibre membranes significantly promoted BMSC proliferation, migration, and osteogenic differentiation. When implanted into a rat cranial defect model, we observed the formation of new bone tissue and the repair of the bone defect. CONCLUSIONS: E7 peptide-functionalized coaxial fibre membranes effectively facilitated bone defect repair by promoting the recruitment and osteogenic differentiation of BMSCs, demonstrating substantial potential for tissue engineering applications.

摘要

背景:骨缺损的修复仍然是一项重大的临床挑战。尽管镁(Mg)基仿生支架被广泛用于骨缺损修复,但Mg²⁺离子的释放常常导致碱性微环境,从而对骨再生产生不利影响。利用内源性骨髓间充质干细胞(BMSC)募集的再生医学策略为治疗骨缺损提供了一种新方法。 方法:在本研究中,我们采用聚(L-乳酸)(PLLA)和聚乙二醇(PEG)作为壳材料,纳米氧化镁(nMgO)与明胶(G)作为核材料,通过同轴静电纺丝技术制备具有“核-壳”结构的同轴纤维膜。此外,我们将BMSC亲和肽E7(EPLQLKM)接枝到纤维上,以实现内源性BMSC的特异性募集。 结果:形态学和结构分析证实纤维膜成功形成了“核-壳”结构。接枝E7肽增强了纤维膜的亲水性和机械性能,并在体外保持了pH稳定性。体外实验表明,功能化纤维膜显著促进了BMSC的增殖、迁移和成骨分化。当植入大鼠颅骨缺损模型时,我们观察到新骨组织的形成和骨缺损的修复。 结论:E7肽功能化的同轴纤维膜通过促进BMSC的募集和成骨分化有效地促进了骨缺损修复,显示出在组织工程应用中的巨大潜力。

相似文献

[1]
E7 peptide and magnesium oxide-functionalized coaxial fibre membranes enhance the recruitment of bone marrow mesenchymal stem cells and promote bone regeneration.

BMC Biotechnol. 2025-8-9

[2]
Three-Dimensional Bioprinted Scaffolds Loaded with Multifunctional Magnesium-Based Metal-Organic Frameworks Improve the Senescence Microenvironment Prompting Aged Bone Defect Repair.

ACS Nano. 2025-6-24

[3]
Osteoinductive IL-8/tDM/PLGA scaffolds based on autologous BMSC recruitment and endogenous growth factor regulation.

Biomater Sci. 2025-7-8

[4]
Advanced Strategies in Bone Tissue Engineering: "Membrane-Jelly" Hydrogel System to Improve Bone Marrow Stem Cell Osteogenic Differentiation and Bone Regeneration.

ACS Appl Mater Interfaces. 2025-6-18

[5]
Investigation and Characterization of Gold Nanoparticle-Loaded Poly(ε-caprolactone) Electrospun Nanofibrous Scaffolds with a Polydopamine Coating for Bone Regeneration.

ACS Biomater Sci Eng. 2025-7-14

[6]
Fabrication and characterizations of 3D printed GelMA-Gel/bioactive glass scaffolds containing cerium for bone damage repair.

Sci Rep. 2025-8-1

[7]
3D-printed nano-hydroxyapatite/poly(lactic-co-glycolic acid) scaffolds with adipose-derived mesenchymal stem cells enhance bone regeneration in rat model of bone defects.

J Biomater Appl. 2025-4-3

[8]
Acceleration of bone repairation by BMSCs overexpressing NGF combined with NSA and allograft bone scaffolds.

Stem Cell Res Ther. 2024-7-2

[9]
Biological characteristics of tissue engineered-nerve grafts enhancing peripheral nerve regeneration.

Stem Cell Res Ther. 2024-7-18

[10]
NIR-Activatable Antibacterial 3D-Printed Hydrogel Scaffold with Controllable Drug Release for Enhanced Vascularized Bone Regeneration.

ACS Appl Mater Interfaces. 2025-7-16

本文引用的文献

[1]
Advances in additive manufacturing for bone tissue engineering: materials, design strategies, and applications.

Biomed Mater. 2024-12-19

[2]
Electrospun polycaprolactone-chitosan nanofibers on a zinc mesh as biodegradable guided bone-regeneration membranes with enhanced mechanical, antibacterial, and osteogenic properties for alveolar bone-repair applications.

Acta Biomater. 2024-10-1

[3]
Design of Collagen and Gelatin-based Electrospun Fibers for Biomedical Purposes: An Overview.

ACS Biomater Sci Eng. 2024-9-9

[4]
Electrospun scaffolds based on a PCL/starch blend reinforced with CaO nanoparticles for bone tissue engineering.

Int J Biol Macromol. 2024-7

[5]
Bioinspired core-shell nanofiber drug-delivery system modulates osteogenic and osteoclast activity for bone tissue regeneration.

Mater Today Bio. 2024-5-9

[6]
Osteoinductive micro-nano guided bone regeneration membrane for in situ bone defect repair.

Stem Cell Res Ther. 2024-5-7

[7]
Electrospun Poly-l-Lactic Acid Membranes Promote M2 Macrophage Polarization by Regulating the PCK2/AMPK/mTOR Signaling Pathway.

Adv Healthc Mater. 2024-9

[8]
Surface functionalization of calcium magnesium phosphate cements with alginate sodium for enhanced bone regeneration via TRPM7/PI3K/Akt signaling pathway.

Int J Biol Macromol. 2024-5

[9]
Controlled-release hydrogel loaded with magnesium-based nanoflowers synergize immunomodulation and cartilage regeneration in tendon-bone healing.

Bioact Mater. 2024-2-28

[10]
Melatonin-encapsuled silk fibroin electrospun nanofibers promote vascularized bone regeneration through regulation of osteogenesis-angiogenesis coupling.

Mater Today Bio. 2024-2-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索