文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Bioinspired core-shell nanofiber drug-delivery system modulates osteogenic and osteoclast activity for bone tissue regeneration.

作者信息

Anjum Shabnam, Wang Yulin, Xin Yuan, Li Xiao, Li Ting, Zhang Hengtong, Quan Liang, Li Ya, Arya Dilip Kumar, Rajinikanth P S, Ao Qiang

机构信息

Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, 110122, China.

NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China.

出版信息

Mater Today Bio. 2024 May 9;26:101088. doi: 10.1016/j.mtbio.2024.101088. eCollection 2024 Jun.


DOI:10.1016/j.mtbio.2024.101088
PMID:38779556
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11109009/
Abstract

Osteogenic-osteoclast coupling processes play a crucial role in bone regeneration. Recently, strategies that focus on multi-functionalized implant surfaces to enhance the healing of bone defects through the synergistic regulation of osteogenesis and osteoclastogenesis is still a challenging task in the field of bone tissue engineering. The aim of this study was to create a dual-drug release-based core-shell nanofibers with the intent of achieving a time-controlled release to facilitate bone regeneration. We fabricated core-shell P/PCL nanofibers using coaxial electrospinning, where alendronate (ALN) was incorporated into the core layer and hydroxyapatite (HA) into shell. The surface of the nanofiber construct was further modified with mussel-derived polydopamine (PDA) to induce hydrophilicity and enhance cell interactions. Surface characterizations confirmed the successful synthesis of PDA@PHA/PCL-ALN nanofibers endowed with excellent mechanical strength (20.02 ± 0.13 MPa) and hydrophilicity (22.56°), as well as the sustained sequential release of ALN and Ca ions. experiments demonstrated that PDA-functionalized core-shell PHA/PCL-ALN scaffolds possessed excellent cytocompatibility, enhanced cell adhesion and proliferation, alkaline phosphatase activity and osteogenesis-related genes. In addition to osteogenesis, the engineered scaffolds also significantly reduced osteoclastogenesis, such as tartrate-resistant acid phosphatase activity and osteoclastogenesis-related gene expression. After 12-week of implantation, it was observed that PDA@PHA/PCL-ALN nanofiber scaffolds, in a rat cranial defect model, significantly promoted bone repair and regeneration. Microcomputed tomography, histological examination, and immunohistochemical analysis collectively demonstrated that the PDA-functionalized core-shell PHA/PCL-ALN scaffolds exhibited exceptional osteogenesis-inducing and osteoclastogenesis-inhibiting effects. Finally, it may be concluded from our results that the bio-inspired surface-functionalized multifunctional, biomimetic and controlled release core-shell nanofiber provides a promising strategy to facilitate bone healing.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7284/11109009/1de7bea16007/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7284/11109009/aa1dcd442e43/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7284/11109009/be7e6310275e/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7284/11109009/62329b414537/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7284/11109009/57ab091cb7a2/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7284/11109009/509cf51f1009/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7284/11109009/1aaa83b602aa/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7284/11109009/1fe20468c22e/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7284/11109009/7f43b4a6c3e4/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7284/11109009/6362e841ac17/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7284/11109009/a7e7c1a749ee/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7284/11109009/4f42146638cf/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7284/11109009/1de7bea16007/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7284/11109009/aa1dcd442e43/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7284/11109009/be7e6310275e/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7284/11109009/62329b414537/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7284/11109009/57ab091cb7a2/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7284/11109009/509cf51f1009/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7284/11109009/1aaa83b602aa/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7284/11109009/1fe20468c22e/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7284/11109009/7f43b4a6c3e4/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7284/11109009/6362e841ac17/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7284/11109009/a7e7c1a749ee/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7284/11109009/4f42146638cf/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7284/11109009/1de7bea16007/gr10.jpg

相似文献

[1]
Bioinspired core-shell nanofiber drug-delivery system modulates osteogenic and osteoclast activity for bone tissue regeneration.

Mater Today Bio. 2024-5-9

[2]
Mussel-inspired multifunctional surface through promoting osteogenesis and inhibiting osteoclastogenesis to facilitate bone regeneration.

NPJ Regen Med. 2022-5-13

[3]
Programmed core-shell electrospun nanofibers to sequentially regulate osteogenesis-osteoclastogenesis balance for promoting immediate implant osseointegration.

Acta Biomater. 2021-11

[4]
Polydopamine-Templated Hydroxyapatite Reinforced Polycaprolactone Composite Nanofibers with Enhanced Cytocompatibility and Osteogenesis for Bone Tissue Engineering.

ACS Appl Mater Interfaces. 2016-2-10

[5]
Multifunctional electrospun nanofibrous scaffold enriched with alendronate and hydroxyapatite for balancing osteogenic and osteoclast activity to promote bone regeneration.

Front Bioeng Biotechnol. 2023-11-9

[6]
Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating, and Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Properties for Orofacial Tissue Regeneration.

ACS Appl Mater Interfaces. 2019-10-7

[7]
Controlled Delivery of Growth Factor by Hierarchical Nanostructured Core-Shell Nanofibers for the Efficient Repair of Critical-Sized Rat Calvarial Defect.

ACS Biomater Sci Eng. 2020-10-12

[8]
Bone remodeling-inspired dual delivery electrospun nanofibers for promoting bone regeneration.

Nanoscale. 2018-12-20

[9]
Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering.

Int J Nanomedicine. 2015-11-18

[10]
Bioinspired sandwich-like hybrid surface functionalized scaffold capable of regulating osteogenesis, angiogenesis, and osteoclastogenesis for robust bone regeneration.

Mater Today Bio. 2022-10-10

引用本文的文献

[1]
E7 peptide and magnesium oxide-functionalized coaxial fibre membranes enhance the recruitment of bone marrow mesenchymal stem cells and promote bone regeneration.

BMC Biotechnol. 2025-8-9

[2]
Topography-based implants for bone regeneration: Design, biological mechanism, and therapeutics.

Mater Today Bio. 2025-7-13

[3]
Biomaterial Cues for Regulation of Osteoclast Differentiation and Function in Bone Regeneration.

Adv Ther (Weinh). 2025-1

[4]
Magnesium-Titanium Alloys: A Promising Solution for Biodegradable Biomedical Implants.

Materials (Basel). 2024-10-23

[5]
HER-2 Receptor and αvβ3 Integrin Dual-Ligand Surface-Functionalized Liposome for Metastatic Breast Cancer Therapy.

Pharmaceutics. 2024-8-27

[6]
Resveratrol-Ampicillin Dual-Drug Loaded Polyvinylpyrrolidone/Polyvinyl Alcohol Biomimic Electrospun Nanofiber Enriched with Collagen for Efficient Burn Wound Repair.

Int J Nanomedicine. 2024

本文引用的文献

[1]
Biomimetic electrospun nanofibrous scaffold for tissue engineering: preparation, optimization by design of experiments (DOE), and characterization.

Front Bioeng Biotechnol. 2023-10-31

[2]
Multifunctional electrospun nanofibrous scaffold enriched with alendronate and hydroxyapatite for balancing osteogenic and osteoclast activity to promote bone regeneration.

Front Bioeng Biotechnol. 2023-11-9

[3]
Exploring polysaccharide and protein-enriched decellularized matrix scaffolds for tendon and ligament repair: A review.

Int J Biol Macromol. 2024-1

[4]
3D-printed porous functional composite scaffolds with polydopamine decoration for bone regeneration.

Regen Biomater. 2023-6-21

[5]
Small-molecule amines: a big role in the regulation of bone homeostasis.

Bone Res. 2023-7-24

[6]
Mussel-inspired polydopamine decorated silane modified-electroconductive gelatin-PEDOT:PSS scaffolds for bone regeneration.

RSC Adv. 2023-5-26

[7]
Electrospun Biomimetic Nanofibrous Scaffolds: A Promising Prospect for Bone Tissue Engineering and Regenerative Medicine.

Int J Mol Sci. 2022-8-16

[8]
Mussel-inspired polydopamine decorated alginate dialdehyde-gelatin 3D printed scaffolds for bone tissue engineering application.

Front Bioeng Biotechnol. 2022-8-8

[9]
Surface polydopamine modification of bone defect repair materials: Characteristics and applications.

Front Bioeng Biotechnol. 2022-7-22

[10]
Mussel-inspired multifunctional surface through promoting osteogenesis and inhibiting osteoclastogenesis to facilitate bone regeneration.

NPJ Regen Med. 2022-5-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索