Suppr超能文献

褪黑素包裹的丝素蛋白电纺纳米纤维通过调节成骨-血管生成耦合促进血管化骨再生。

Melatonin-encapsuled silk fibroin electrospun nanofibers promote vascularized bone regeneration through regulation of osteogenesis-angiogenesis coupling.

作者信息

Deng Lei, Hou Mingzhuang, Lv Nanning, Zhou Quan, Hua Xi, Hu Xiayu, Ge Xiaoyang, Zhu Xuesong, Xu Yong, Yang Huilin, Chen Xi, Liu Hao, He Fan

机构信息

Department of Orthopaedics, First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China.

Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215000, China.

出版信息

Mater Today Bio. 2024 Feb 2;25:100985. doi: 10.1016/j.mtbio.2024.100985. eCollection 2024 Apr.

Abstract

The repair of critical-sized bone defects poses a significant challenge due to the absence of periosteum, which plays a crucial role in coordinating the processes of osteogenesis and vascularization during bone healing. Herein, we hypothesized that melatonin-encapsuled silk Fibronin electrospun nanofibers (SF@MT) could provide intrinsic induction of both osteogenesis and angiogenesis, thereby promoting vascularized bone regeneration. The sustained release of melatonin from the SF@MT nanofibers resulted in favorable biocompatibility and superior osteogenic induction of bone marrow mesenchymal stem cells (BMMSCs). Interestingly, melatonin promoted the migration and tube formation of human umbilical vein endothelial cells (HUVECs) in a BMMSC-dependent manner, potentially through the upregulation of vascular endothelial growth factor (VEGFA) expression in SF@MT-cultured BMMSCs. SF@MT nanofibers enhanced the BMMSC-mediated angiogenesis by activating the PI3K/Akt signaling pathway. experiments indicated that the implantation of SF@MT nanofibers into rat critical-sized calvarial defects significantly enhances the production of bone matrix and the development of new blood vessels, leading to an accelerated process of vascularized bone regeneration. Consequently, the utilization of melatonin-encapsulated silk Fibronin electrospun nanofibers shows great promise as a potential solution for artificial periosteum, with the potential to regulate the coupling of osteogenesis and angiogenesis in critical-sized bone defect repair.

摘要

由于缺乏骨膜,临界尺寸骨缺损的修复面临重大挑战,而骨膜在骨愈合过程中对协调成骨和血管生成过程起着关键作用。在此,我们假设包裹褪黑素的丝素蛋白电纺纳米纤维(SF@MT)可以提供成骨和血管生成的内在诱导作用,从而促进血管化骨再生。SF@MT纳米纤维中褪黑素的持续释放导致了良好的生物相容性以及对骨髓间充质干细胞(BMMSC)卓越的成骨诱导作用。有趣的是,褪黑素以BMMSC依赖的方式促进人脐静脉内皮细胞(HUVEC)的迁移和管腔形成,这可能是通过上调SF@MT培养的BMMSC中血管内皮生长因子(VEGFA)的表达来实现的。SF@MT纳米纤维通过激活PI3K/Akt信号通路增强了BMMSC介导的血管生成。实验表明,将SF@MT纳米纤维植入大鼠临界尺寸的颅骨缺损中可显著增强骨基质的产生和新血管的发育,从而加速血管化骨再生进程。因此,利用包裹褪黑素的丝素蛋白电纺纳米纤维作为人工骨膜的潜在解决方案具有很大的前景,有望在临界尺寸骨缺损修复中调节成骨和血管生成的耦合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9499/10850961/dff9faf2787c/ga1.jpg

相似文献

2
A sponge-like nanofiber melatonin-loaded scaffold accelerates vascularized bone regeneration via improving mitochondrial energy metabolism.
Mater Today Bio. 2024 May 3;26:101078. doi: 10.1016/j.mtbio.2024.101078. eCollection 2024 Jun.
3
The Effect of Angiogenesis-Based Scaffold of MesoporousBioactive Glass Nanofiber on Osteogenesis.
Int J Mol Sci. 2022 Oct 21;23(20):12670. doi: 10.3390/ijms232012670.
9
Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
Int J Nanomedicine. 2016 Apr 11;11:1483-500. doi: 10.2147/IJN.S97445. eCollection 2016.

引用本文的文献

2
Hypoxic niches established via endogenous oxygen production in scaffold under anoxia for enhanced bone regeneration.
Regen Biomater. 2025 Jun 26;12:rbaf070. doi: 10.1093/rb/rbaf070. eCollection 2025.
3
Beyond natural silk: Bioengineered silk fibroin for bone regeneration.
Mater Today Bio. 2025 Jun 23;33:102014. doi: 10.1016/j.mtbio.2025.102014. eCollection 2025 Aug.
4
Reverse biogradient biomimetic periosteum with osteogenic and angiogenic characteristics for bone regeneration.
Mater Today Bio. 2025 Jun 9;33:101967. doi: 10.1016/j.mtbio.2025.101967. eCollection 2025 Aug.
5
3D bioprinted scaffolds for osteochondral regeneration: advancements and applications.
Mater Today Bio. 2025 May 8;32:101834. doi: 10.1016/j.mtbio.2025.101834. eCollection 2025 Jun.
6
Advances in biomaterials for osteonecrosis treatment.
Front Pharmacol. 2025 May 21;16:1559810. doi: 10.3389/fphar.2025.1559810. eCollection 2025.
9
Microenvironment-responsive injectable hydrogel for neuro-vascularized bone regeneration.
Mater Today Bio. 2024 Nov 26;29:101369. doi: 10.1016/j.mtbio.2024.101369. eCollection 2024 Dec.

本文引用的文献

1
2
Exosome-derived miR-5p-72106_14 in vascular endothelial cells regulates fate determination of BMSCs.
Toxicol Appl Pharmacol. 2024 Jan;482:116793. doi: 10.1016/j.taap.2023.116793. Epub 2023 Dec 18.
3
Melatonin-loaded self-healing hydrogel targets mitochondrial energy metabolism and promotes annulus fibrosus regeneration.
Mater Today Bio. 2023 Sep 22;23:100811. doi: 10.1016/j.mtbio.2023.100811. eCollection 2023 Dec.
5
Clinical results of periacetabular osteotomy with structural bone allograft for the treatment of severe hip dysplasia.
Bone Joint J. 2023 Jul 1;105-B(7):743-750. doi: 10.1302/0301-620X.105B7.BJJ-2023-0056.R1.
6
Electrospun sandwich-structured of polycaprolactone/gelatin-based nanofibers with controlled release of ceftazidime for wound dressing.
Int J Biol Macromol. 2023 May 1;236:123819. doi: 10.1016/j.ijbiomac.2023.123819. Epub 2023 Mar 3.
7
Melatonin Repairs Osteoporotic Bone Defects in Iron-Overloaded Rats through PI3K/AKT/GSK-3/P70S6k Signaling Pathway.
Oxid Med Cell Longev. 2023 Jan 17;2023:7718155. doi: 10.1155/2023/7718155. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验