Deng Lei, Hou Mingzhuang, Lv Nanning, Zhou Quan, Hua Xi, Hu Xiayu, Ge Xiaoyang, Zhu Xuesong, Xu Yong, Yang Huilin, Chen Xi, Liu Hao, He Fan
Department of Orthopaedics, First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China.
Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
Mater Today Bio. 2024 Feb 2;25:100985. doi: 10.1016/j.mtbio.2024.100985. eCollection 2024 Apr.
The repair of critical-sized bone defects poses a significant challenge due to the absence of periosteum, which plays a crucial role in coordinating the processes of osteogenesis and vascularization during bone healing. Herein, we hypothesized that melatonin-encapsuled silk Fibronin electrospun nanofibers (SF@MT) could provide intrinsic induction of both osteogenesis and angiogenesis, thereby promoting vascularized bone regeneration. The sustained release of melatonin from the SF@MT nanofibers resulted in favorable biocompatibility and superior osteogenic induction of bone marrow mesenchymal stem cells (BMMSCs). Interestingly, melatonin promoted the migration and tube formation of human umbilical vein endothelial cells (HUVECs) in a BMMSC-dependent manner, potentially through the upregulation of vascular endothelial growth factor (VEGFA) expression in SF@MT-cultured BMMSCs. SF@MT nanofibers enhanced the BMMSC-mediated angiogenesis by activating the PI3K/Akt signaling pathway. experiments indicated that the implantation of SF@MT nanofibers into rat critical-sized calvarial defects significantly enhances the production of bone matrix and the development of new blood vessels, leading to an accelerated process of vascularized bone regeneration. Consequently, the utilization of melatonin-encapsulated silk Fibronin electrospun nanofibers shows great promise as a potential solution for artificial periosteum, with the potential to regulate the coupling of osteogenesis and angiogenesis in critical-sized bone defect repair.
由于缺乏骨膜,临界尺寸骨缺损的修复面临重大挑战,而骨膜在骨愈合过程中对协调成骨和血管生成过程起着关键作用。在此,我们假设包裹褪黑素的丝素蛋白电纺纳米纤维(SF@MT)可以提供成骨和血管生成的内在诱导作用,从而促进血管化骨再生。SF@MT纳米纤维中褪黑素的持续释放导致了良好的生物相容性以及对骨髓间充质干细胞(BMMSC)卓越的成骨诱导作用。有趣的是,褪黑素以BMMSC依赖的方式促进人脐静脉内皮细胞(HUVEC)的迁移和管腔形成,这可能是通过上调SF@MT培养的BMMSC中血管内皮生长因子(VEGFA)的表达来实现的。SF@MT纳米纤维通过激活PI3K/Akt信号通路增强了BMMSC介导的血管生成。实验表明,将SF@MT纳米纤维植入大鼠临界尺寸的颅骨缺损中可显著增强骨基质的产生和新血管的发育,从而加速血管化骨再生进程。因此,利用包裹褪黑素的丝素蛋白电纺纳米纤维作为人工骨膜的潜在解决方案具有很大的前景,有望在临界尺寸骨缺损修复中调节成骨和血管生成的耦合。