Li JingWen, Zhou YaFang, Zhang MengJing, Adeoye John, Pu Jane JingYa, Zhou MiMi, Liu ChuanXia, Fan LiJie, McGrath Colman, Zhang Dian, Zheng LiWu
Division of Oral & Maxillofacial Surgery, Faculty of Dentistry, University of Hong Kong, Hong Kong SAR, China.
Department of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China.
NPJ Digit Med. 2025 Aug 10;8(1):513. doi: 10.1038/s41746-025-01885-8.
Oral potentially malignant disorder poses a significant risk of malignant transformation, particularly in cases with epithelial dysplasia (OED). Current OED assessment methods are invasive and lack reliable decision-support tools for cancer risk evaluation and follow-up optimization. This study developed and validated OMMT-PredNet, a fully automated multimodal deep learning framework requiring no manual ROI annotation, for non-invasive OED identification and time-dependent cancer risk prediction. Utilizing data from 649 histopathologically confirmed leukoplakia cases across multiple institutions (2003-2024), including 598 cases in the primary cohort and 51 in the external validation set, the model integrated paired high-resolution clinical images and medical records. OMMT-PredNet achieved an AUC of 0.9592 (95% CI: 0.9491-0.9693) for cancer risk prediction and 0.9219 (95% CI: 0.9088-0.9349) for OED identification, with high specificity (MT: 0.9490; OED: 0.9182) and precision (MT: 0.9442; OED: 0.9303). Calibration and decision curve analyses confirmed clinical applicability, while external validation demonstrated robustness. This multidimensional model effectively predicts OED and cancer risk, highlighting its global applicability in enhancing oral cancer screening and improving patient outcomes.
口腔潜在恶性疾病具有显著的恶变风险,尤其是上皮发育异常(OED)的病例。当前的OED评估方法具有侵入性,且缺乏用于癌症风险评估和随访优化的可靠决策支持工具。本研究开发并验证了OMMT-PredNet,这是一个完全自动化的多模态深度学习框架,无需手动标注感兴趣区域(ROI),用于非侵入性OED识别和随时间变化的癌症风险预测。利用来自多个机构(2003 - 2024年)的649例经组织病理学确诊的白斑病例数据,包括598例主要队列病例和51例外部验证集病例,该模型整合了配对的高分辨率临床图像和病历。OMMT-PredNet在癌症风险预测方面的曲线下面积(AUC)为0.9592(95%置信区间:0.9491 - 0.9693),在OED识别方面的AUC为0.9219(95%置信区间:0.9088 - 0.9349),具有高特异性(MT:0.9490;OED:0.9182)和高精准度(MT:0.9442;OED:0.9303)。校准和决策曲线分析证实了其临床适用性,外部验证证明了其稳健性。这个多维度模型有效地预测了OED和癌症风险,突出了其在全球范围内增强口腔癌筛查和改善患者预后方面的适用性。