Suppr超能文献

随着人工智能向多模态发展,其在医疗领域的应用也日益增多。

As artificial intelligence goes multimodal, medical applications multiply.

机构信息

Scripps Research, La Jolla, CA, USA.

出版信息

Science. 2023 Sep 15;381(6663):adk6139. doi: 10.1126/science.adk6139.

Abstract

Machines don't have eyes, but you wouldn't know that if you followed the progression of deep learning models for accurate interpretation of medical images, such as x-rays, computed tomography (CT) and magnetic resonance imaging (MRI) scans, pathology slides, and retinal photos. Over the past several years, there has been a torrent of studies that have consistently demonstrated how powerful "machine eyes" can be, not only compared with medical experts but also for detecting features in medical images that are not readily discernable by humans. For example, a retinal scan is rich with information that people can't see, but machines can, providing a gateway to multiple aspects of human physiology, including blood pressure; glucose control; risk of Parkinson's, Alzheimer's, kidney, and hepatobiliary diseases; and the likelihood of heart attacks and strokes. As a cardiologist, I would not have envisioned that machine interpretation of an electrocardiogram would provide information about the individual's age, sex, anemia, risk of developing diabetes or arrhythmias, heart function and valve disease, kidney, or thyroid conditions. Likewise, applying deep learning to a pathology slide of tumor tissue can also provide insight about the site of origin, driver mutations, structural genomic variants, and prognosis. Although these machine vision capabilities for medical image interpretation may seem impressive, they foreshadow what is potentially far more expansive terrain for artificial intelligence (AI) to transform medicine. The big shift ahead is the ability to transcend narrow, unimodal tasks, confined to images, and broaden machine capabilities to include text and speech, encompassing all input modes, setting the foundation for multimodal AI.

摘要

机器没有眼睛,但如果你关注深度学习模型在医学图像(如 X 光、计算机断层扫描(CT)和磁共振成像(MRI)扫描、病理切片和视网膜照片)准确解释方面的发展,你就不会这么认为了。在过去的几年里,已经有大量的研究一致表明,“机器之眼”不仅可以与医学专家相媲美,而且还可以检测到人类不易察觉的医学图像特征,其功能非常强大。例如,视网膜扫描包含了丰富的信息,人类无法看到,但机器可以看到,这为人类生理学的多个方面提供了一个入口,包括血压、血糖控制、帕金森病、阿尔茨海默病、肾脏和肝胆疾病的风险,以及心脏病发作和中风的可能性。作为一名心脏病专家,我从未想过机器对心电图的解释会提供有关个体年龄、性别、贫血、患糖尿病或心律失常、心脏功能和瓣膜疾病、肾脏或甲状腺疾病的信息。同样,将深度学习应用于肿瘤组织的病理切片也可以提供关于起源部位、驱动突变、结构基因组变异和预后的信息。尽管这些用于医学图像解释的机器视觉功能看起来令人印象深刻,但它们预示着人工智能(AI)更广阔的领域有可能彻底改变医学。未来的重大转变是超越狭隘、单一模式任务的能力,这些任务仅限于图像,并拓宽机器的能力,包括文本和语音,涵盖所有输入模式,为多模态人工智能奠定基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验