Suppr超能文献

用于燃料电池的石墨烯封装钴基合金催化剂中的电荷转移动力学与重组能调控

Charge transfer dynamics and tuning of reorganization energy in graphene-encapsulated co-based alloy catalysts for fuel cells.

作者信息

Jeffery A Anto, Chougule Sourabh S, Sharma Monika, Kim Yunjin, Ko Keonwoo, Min Jiho, Heo Jinseo, Lim Hyung-Kyu, Jung Namgee

机构信息

Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.

Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.

出版信息

Nanoscale. 2025 Aug 21;17(33):19377-19389. doi: 10.1039/d5nr01548k.

Abstract

Graphene-encapsulated metal alloy nanocatalysts with a metal@graphene type architecture are unique catalysts with multifunctional properties. However, effectively integrating these physicochemical properties to enhance electrocatalytic performance still presents a significant challenge. Here, using density functional theory (DFT) calculations, we first reveal that tuning the composition of CoPd ( ≫ ) alloys optimizes structural reorganization energy and enhances charge transfer from the metal core to the graphene shell, thereby improving oxygen reduction reaction (ORR) activity. Guided by these computational insights, we synthesize graphitic carbon shell-encapsulated and carbon-supported CoPd alloy catalysts (CoPd@Gr/C) with varying Co : Pd ratios a solvothermal decomposition followed by heat-treatment. Interestingly, electrochemical screening of various synthesized catalysts demonstrates that CoPd@Gr/C catalyst with an ultra-low Pd loading exhibits the highest ORR activity in KOH, which is comparable to that of the commercial Pt/C catalyst. This enhanced activity originates from the synergistic effects where the Co-rich composition provides strong electron transfer while the presence of Pd creates beneficial lattice strain through atomic size differences. Moreover, electrochemical poisoning tests and accelerated durability tests provide strong evidence supporting the dual role of the graphene shell in improving ORR activity and stability. The graphene shell not only acted as the sole active site for the catalytic activity but also served as protective layers, preventing the corrosion of the alloy particles. Thus, this work will pave a new way for designing and developing cost-effective and high-performance cathode catalysts for anion exchange membrane fuel cells.

摘要

具有金属@石墨烯结构的石墨烯包裹金属合金纳米催化剂是具有多功能特性的独特催化剂。然而,有效整合这些物理化学性质以提高电催化性能仍然是一项重大挑战。在此,我们通过密度泛函理论(DFT)计算,首先揭示了调整CoPd(≫)合金的组成可优化结构重组能,并增强从金属核到石墨烯壳的电荷转移,从而提高氧还原反应(ORR)活性。基于这些计算结果的指导,我们通过溶剂热分解然后热处理的方法,合成了具有不同Co : Pd比例的石墨碳壳包裹且碳负载的CoPd合金催化剂(CoPd@Gr/C)。有趣的是,对各种合成催化剂的电化学筛选表明,具有超低Pd负载量的CoPd@Gr/C催化剂在KOH中表现出最高的ORR活性,与商业Pt/C催化剂相当。这种增强的活性源于协同效应,其中富含Co的组成提供了强电子转移,而Pd的存在通过原子尺寸差异产生了有益的晶格应变。此外,电化学中毒测试和加速耐久性测试提供了有力证据,支持石墨烯壳在提高ORR活性和稳定性方面的双重作用。石墨烯壳不仅作为催化活性的唯一活性位点,还作为保护层,防止合金颗粒的腐蚀。因此,这项工作将为设计和开发用于阴离子交换膜燃料电池的经济高效且高性能的阴极催化剂开辟一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验