Suppr超能文献

CMSCNet:一种基于上下文的轻量级肌肉骨骼超声图像分割方法。

CMSCNet: a context based lightweight musculoskeletal ultrasound image segmentation method.

作者信息

Chen Shu, Zhou Zhi-Ze, Liang Dong-Xue

机构信息

Institute of Artificial Intelligence in Sports, Capital University of Physical Education and Sports, Beijing, China.

出版信息

Quant Imaging Med Surg. 2025 Aug 1;15(8):7046-7061. doi: 10.21037/qims-2024-2523. Epub 2025 Jul 29.

Abstract

BACKGROUND

Musculoskeletal ultrasound (MSUS) is a non-invasive and non-intrusive method for examining muscles and bones. Therefore, MSUS image analysis plays a crucial role in the assessment and early detection of musculoskeletal disorders However, due to the complexity of noise in MSUS images, analyzing and interpreting these images is a tedious and time-consuming process. Currently, ultrasound devices still rely on manual methods to analyze structural parameters such as muscle thickness, penniform angle, and fascicle length. While recent advancements in deep learning have shown promise in automating image segmentation tasks, existing methods often require extensive computational resources and may not be suitable for real-time applications. There remains a need for lightweight and efficient models that can achieve high accuracy while reducing computational load. This study aims to address this gap by proposing a context-based lightweight deep-learning framework for the automatic segmentation of MSUS images.

METHODS

We propose a context-based lightweight deep learning framework for the automatic segmentation of MSUS images, aiming to make the segmented images as close as possible to those manually annotated by professional doctors. This method is based on the U-Net architecture, with multi-layer perception modules added to the encoder and decoder to reduce the number of parameters and improve computational efficiency. Additionally, a dense atrous convolution module is used to extract contextual features from the images, improving segmentation accuracy, and a restructured convolution module for spatial and channel dimensions is employed to reduce the extraction of redundant features during the segmentation task. We applied our method to a publicly available leg muscle dataset to extract and analyze the morphological features of the penniform muscle and conducted ablation experiments.

RESULTS

The results showed that the accuracy of our algorithm was 98.7%, the same as the U-Net architecture, but with only one-tenth of the parameters. The average intersection over union (IoU) also reached 0.7227. Our network can capture more details of the muscle aponeurosis and effectively focuses on the junctions between the aponeurosis and muscle fibers, showing minimal differences from the ground truth and achieving very high accuracy.

CONCLUSIONS

This method can automatically, quickly, and accurately extract the morphological features of penniform muscles, providing a basis for improving the accuracy of muscle pathology assessment, the precision of interventional therapy, and the scientific rigor of rehabilitation treatment.

摘要

背景

肌肉骨骼超声(MSUS)是一种用于检查肌肉和骨骼的非侵入性方法。因此,MSUS图像分析在肌肉骨骼疾病的评估和早期检测中起着至关重要的作用。然而,由于MSUS图像中噪声的复杂性,分析和解释这些图像是一个繁琐且耗时的过程。目前,超声设备仍依赖手动方法来分析诸如肌肉厚度、羽状角和肌束长度等结构参数。虽然深度学习的最新进展在自动图像分割任务中显示出了前景,但现有方法通常需要大量的计算资源,可能不适用于实时应用。仍然需要能够在降低计算负荷的同时实现高精度的轻量级和高效模型。本研究旨在通过提出一种基于上下文的轻量级深度学习框架来自动分割MSUS图像,以填补这一空白。

方法

我们提出了一种基于上下文的轻量级深度学习框架用于MSUS图像的自动分割,旨在使分割后的图像尽可能接近专业医生手动标注的图像。该方法基于U-Net架构,在编码器和解码器中添加了多层感知模块以减少参数数量并提高计算效率。此外,使用密集空洞卷积模块从图像中提取上下文特征,提高分割精度,并采用用于空间和通道维度的重构卷积模块来减少分割任务期间冗余特征的提取。我们将我们的方法应用于一个公开可用的腿部肌肉数据集,以提取和分析羽状肌的形态特征并进行消融实验。

结果

结果表明,我们算法的准确率为98.7%,与U-Net架构相同,但参数仅为其十分之一。平均交并比(IoU)也达到了0.7227。我们的网络能够捕捉更多肌筋膜的细节,并有效地聚焦于腱膜与肌纤维之间的连接处,与真实情况的差异极小,实现了非常高的精度。

结论

该方法能够自动、快速且准确地提取羽状肌的形态特征,为提高肌肉病理学评估的准确性、介入治疗的精度以及康复治疗的科学严谨性提供了依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a99/12332728/297a8e0149c3/qims-15-08-7046-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验