Suppr超能文献

基于肌肉超声的肌炎自动诊断:探索机器学习和深度学习方法的应用

Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods.

作者信息

Burlina Philippe, Billings Seth, Joshi Neil, Albayda Jemima

机构信息

Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland, United States of America.

Division of Rheumatology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America.

出版信息

PLoS One. 2017 Aug 30;12(8):e0184059. doi: 10.1371/journal.pone.0184059. eCollection 2017.

Abstract

OBJECTIVE

To evaluate the use of ultrasound coupled with machine learning (ML) and deep learning (DL) techniques for automated or semi-automated classification of myositis.

METHODS

Eighty subjects comprised of 19 with inclusion body myositis (IBM), 14 with polymyositis (PM), 14 with dermatomyositis (DM), and 33 normal (N) subjects were included in this study, where 3214 muscle ultrasound images of 7 muscles (observed bilaterally) were acquired. We considered three problems of classification including (A) normal vs. affected (DM, PM, IBM); (B) normal vs. IBM patients; and (C) IBM vs. other types of myositis (DM or PM). We studied the use of an automated DL method using deep convolutional neural networks (DL-DCNNs) for diagnostic classification and compared it with a semi-automated conventional ML method based on random forests (ML-RF) and "engineered" features. We used the known clinical diagnosis as the gold standard for evaluating performance of muscle classification.

RESULTS

The performance of the DL-DCNN method resulted in accuracies ± standard deviation of 76.2% ± 3.1% for problem (A), 86.6% ± 2.4% for (B) and 74.8% ± 3.9% for (C), while the ML-RF method led to accuracies of 72.3% ± 3.3% for problem (A), 84.3% ± 2.3% for (B) and 68.9% ± 2.5% for (C).

CONCLUSIONS

This study demonstrates the application of machine learning methods for automatically or semi-automatically classifying inflammatory muscle disease using muscle ultrasound. Compared to the conventional random forest machine learning method used here, which has the drawback of requiring manual delineation of muscle/fat boundaries, DCNN-based classification by and large improved the accuracies in all classification problems while providing a fully automated approach to classification.

摘要

目的

评估超声结合机器学习(ML)和深度学习(DL)技术在肌炎自动或半自动分类中的应用。

方法

本研究纳入了80名受试者,其中包括19名包涵体肌炎(IBM)患者、14名多发性肌炎(PM)患者、14名皮肌炎(DM)患者和33名正常(N)受试者,共采集了7块肌肉(双侧观察)的3214张肌肉超声图像。我们考虑了三个分类问题,包括(A)正常与患病(DM、PM、IBM);(B)正常与IBM患者;以及(C)IBM与其他类型的肌炎(DM或PM)。我们研究了使用深度卷积神经网络的自动DL方法(DL-DCNN)进行诊断分类,并将其与基于随机森林(ML-RF)和“工程”特征的半自动传统ML方法进行比较。我们将已知的临床诊断作为评估肌肉分类性能的金标准。

结果

DL-DCNN方法在问题(A)中的准确率±标准差为76.2%±3.1%,在问题(B)中为86.6%±2.4%,在问题(C)中为74.8%±3.9%,而ML-RF方法在问题(A)中的准确率为72.3%±3.3%,在问题(B)中为84.3%±2.3%,在问题(C)中为68.9%±2.5%。

结论

本研究展示了机器学习方法在使用肌肉超声对炎性肌肉疾病进行自动或半自动分类中的应用。与这里使用的传统随机森林机器学习方法相比,该方法存在需要手动描绘肌肉/脂肪边界的缺点,基于DCNN的分类总体上提高了所有分类问题的准确率,同时提供了一种完全自动化的分类方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fc7/5576677/f7def8321fc3/pone.0184059.g001.jpg

相似文献

1
Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods.
PLoS One. 2017 Aug 30;12(8):e0184059. doi: 10.1371/journal.pone.0184059. eCollection 2017.
2
Texture analysis of sonographic muscle images can distinguish myopathic conditions.
J Med Invest. 2019;66(3.4):237-247. doi: 10.2152/jmi.66.237.
3
Muscular ultrasound in idiopathic inflammatory myopathies of adults.
J Neurol Sci. 1993 May;116(1):82-92. doi: 10.1016/0022-510x(93)90093-e.
4
Ultrasound can differentiate inclusion body myositis from disease mimics.
Muscle Nerve. 2020 Jun;61(6):783-788. doi: 10.1002/mus.26875. Epub 2020 Apr 11.
6
Machine learning algorithms reveal unique gene expression profiles in muscle biopsies from patients with different types of myositis.
Ann Rheum Dis. 2020 Sep;79(9):1234-1242. doi: 10.1136/annrheumdis-2019-216599. Epub 2020 Jun 16.
7
Intramuscular dissociation of echogenicity in the triceps surae characterizes sporadic inclusion body myositis.
Eur J Neurol. 2016 Mar;23(3):588-96. doi: 10.1111/ene.12899. Epub 2015 Dec 26.
8
Radiographic patterns of muscle involvement in the idiopathic inflammatory myopathies.
Muscle Nerve. 2019 Nov;60(5):549-557. doi: 10.1002/mus.26660. Epub 2019 Aug 20.
9
Increased fascial thickness of the deltoid muscle in dermatomyositis and polymyositis: An ultrasound study.
Muscle Nerve. 2015 Oct;52(4):534-9. doi: 10.1002/mus.24595. Epub 2015 Aug 20.

引用本文的文献

1
CMSCNet: a context based lightweight musculoskeletal ultrasound image segmentation method.
Quant Imaging Med Surg. 2025 Aug 1;15(8):7046-7061. doi: 10.21037/qims-2024-2523. Epub 2025 Jul 29.
2
Integrating Machine Learning into Myositis Research: a Systematic Review.
Clin Rev Allergy Immunol. 2025 Jul 8;68(1):62. doi: 10.1007/s12016-025-09076-9.
5
Ultrasound Beyond Joints: A Review of Extra-Articular Applications in Rheumatology.
Curr Rheumatol Rep. 2025 Mar 4;27(1):20. doi: 10.1007/s11926-025-01186-9.
6
Perceptions and attitudes towards AI among trainee and qualified radiologists at selected South African training hospitals.
SA J Radiol. 2025 Jan 10;29(1):3026. doi: 10.4102/sajr.v29i1.3026. eCollection 2025.
8
[A lightweight convolutional neural network for myositis classification from muscle ultrasound images].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Oct 25;41(5):895-902. doi: 10.7507/1001-5515.202301023.
9
Real-time artificial intelligence-based texture analysis of muscle ultrasound data for neuromuscular disorder assessment.
Clin Neurophysiol Pract. 2024 Aug 19;9:242-248. doi: 10.1016/j.cnp.2024.08.003. eCollection 2024.

本文引用的文献

1
Quantitative Muscle Ultrasonography Using Textural Analysis in Amyotrophic Lateral Sclerosis.
Ultrason Imaging. 2017 Nov;39(6):357-368. doi: 10.1177/0161734617711370. Epub 2017 May 28.
2
Quantitative muscle ultrasound detects disease progression in Duchenne muscular dystrophy.
Ann Neurol. 2017 May;81(5):633-640. doi: 10.1002/ana.24904. Epub 2017 May 4.
4
Neurogenic and Myogenic Diseases: Quantitative Texture Analysis of Muscle US Data for Differentiation.
Radiology. 2017 May;283(2):492-498. doi: 10.1148/radiol.2016160826. Epub 2017 Feb 2.
5
Fully Automated Muscle Ultrasound Analysis (MUSA): Robust and Accurate Muscle Thickness Measurement.
Ultrasound Med Biol. 2017 Jan;43(1):195-205. doi: 10.1016/j.ultrasmedbio.2016.08.032. Epub 2016 Oct 6.
7
Muscle ultrasound.
Handb Clin Neurol. 2016;136:843-53. doi: 10.1016/B978-0-444-53486-6.00042-9.
8
Ultrasound in the Assessment of Myopathic Disorders.
J Clin Neurophysiol. 2016 Apr;33(2):103-11. doi: 10.1097/WNP.0000000000000245.
9
Review of Quantitative Ultrasound: Envelope Statistics and Backscatter Coefficient Imaging and Contributions to Diagnostic Ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Feb;63(2):336-51. doi: 10.1109/TUFFC.2015.2513958. Epub 2016 Jan 8.
10
Intramuscular dissociation of echogenicity in the triceps surae characterizes sporadic inclusion body myositis.
Eur J Neurol. 2016 Mar;23(3):588-96. doi: 10.1111/ene.12899. Epub 2015 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验