文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

五味子乙素通过调节小鼠的PPARγ信号通路和肠道微生物群来减轻代谢相关脂肪性肝病。

Schisandrin B alleviates metabolic associated fatty liver disease by regulating the PPARγ signaling pathway and gut microbiota in mice.

作者信息

Wan Jiuchen, Lang Chenjian, Gao Meng, Liu Feilong, Feng Xiyuan, Li He, Wang Chunmei, Sun Jinghui

机构信息

School of Pharmacy, Beihua University, Jilin, China.

出版信息

Front Pharmacol. 2025 Jul 25;16:1583307. doi: 10.3389/fphar.2025.1583307. eCollection 2025.


DOI:10.3389/fphar.2025.1583307
PMID:40786039
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12331688/
Abstract

OBJECTIVE: The aim of this study was to investigate the improving effect of Schisandrin B (Sch B) on metabolic associated fatty liver disease (MAFLD) by regulating the PPARγ signaling pathway and gut microbiota, and its mechanism in mice. METHODS: Male C57BL/6 mice were fed with a high-fat diet (HFD) continuously for 16 weeks to establish a MAFLD model. The levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10), and lipopolysaccharide (LPS) in serum, as well as the level of malondialdehyde (MDA), and the activities of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in the liver tissue were measured. Changes in the gut microbiota of mice was analyzed by 16S rRNA sequencing technology. The expression levels of PPARγ, Plin2, Pck1, Acsl4, and Fads1 proteins, as well as those of zonula occludins 1 (ZO-1) and Occludin proteins in the colon tissue were detected by Western Blot. RESULTS: The results showed that Sch B could alleviate the structure disorder, ballooning degeneration, inflammatory cell infiltration, liver lipid droplets, and fibrosis in liver tissue, lower the levels of AST, ALT, TG, TC, LDL-C, and LPS, increase the level of HDL-C and lower the levels of TNF-α and IL-6 in serum, increase the level of IL-10, and lower the level of MDA and increase the activities of SOD and GSH-Px in liver tissue in MAFLD mice. Sch B could increase the expression levels of PPARγ, Pck1, and Fads1 proteins, but decrease Plin2 and Acsl4 proteins in liver tissue. Sch B could improve the diversity and abundance of the gut microbiota, restore the normal composition of the gut microbiota at the phylum and genus levels, alleviate the disruption of the gut barrier caused by HFD, and enhance the expression of ZO-1 and Occludin proteins in colon tissue in MAFLD mice. CONCLUSION: This study showed Sch B can improve HFD-induced MAFLD, and the mechanism may be through regulating the PPARγ, Plin2, PCk1, Acsl4 and Fads1 signaling pathway, restoring the diversity of gut microbiota, and improving the gut barrier to delay the progression of MAFLD.

摘要

目的:本研究旨在探讨五味子乙素(Sch B)通过调节过氧化物酶体增殖物激活受体γ(PPARγ)信号通路和肠道微生物群对代谢相关脂肪性肝病(MAFLD)的改善作用及其在小鼠中的作用机制。 方法:雄性C57BL/6小鼠连续16周高脂饮食(HFD)以建立MAFLD模型。检测血清中天冬氨酸氨基转移酶(AST)、丙氨酸氨基转移酶(ALT)、甘油三酯(TG)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)、肿瘤坏死因子-α(TNF-α)、白细胞介素-6(IL-6)、白细胞介素-10(IL-10)和脂多糖(LPS)水平,以及肝组织中丙二醛(MDA)水平、谷胱甘肽过氧化物酶(GSH-Px)和超氧化物歧化酶(SOD)活性。采用16S rRNA测序技术分析小鼠肠道微生物群的变化。通过蛋白质免疫印迹法检测结肠组织中PPARγ、Plin2、Pck1、Acsl4和Fads1蛋白以及紧密连接蛋白1(ZO-1)和闭合蛋白的表达水平。 结果:结果显示,Sch B可减轻MAFLD小鼠肝组织的结构紊乱、气球样变性、炎性细胞浸润、肝脂质滴和纤维化,降低血清中AST、ALT、TG、TC、LDL-C和LPS水平,升高HDL-C水平,降低TNF-α和IL-6水平,升高IL-10水平,降低肝组织中MDA水平,升高SOD和GSH-Px活性。Sch B可增加肝组织中PPARγ、Pck1和Fads1蛋白的表达水平,但降低Plin2和Acsl4蛋白的表达水平。Sch B可改善肠道微生物群的多样性和丰度,在门和属水平恢复肠道微生物群的正常组成,减轻HFD引起的肠道屏障破坏,并增强MAFLD小鼠结肠组织中ZO-1和闭合蛋白的表达。 结论:本研究表明Sch B可改善HFD诱导的MAFLD,其机制可能是通过调节PPARγ、Plin2、PCk1、Acsl4和Fads1信号通路,恢复肠道微生物群的多样性,改善肠道屏障,从而延缓MAFLD的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95c3/12331688/a05fd1b89bcc/fphar-16-1583307-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95c3/12331688/9dc9a6ef56e4/fphar-16-1583307-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95c3/12331688/652857ce092e/fphar-16-1583307-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95c3/12331688/2d6f9d1a6b95/fphar-16-1583307-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95c3/12331688/580256c1a697/fphar-16-1583307-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95c3/12331688/a41cae211437/fphar-16-1583307-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95c3/12331688/289b2c077ded/fphar-16-1583307-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95c3/12331688/17a8ec7055ff/fphar-16-1583307-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95c3/12331688/4e39ff207182/fphar-16-1583307-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95c3/12331688/e475192861fa/fphar-16-1583307-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95c3/12331688/a05fd1b89bcc/fphar-16-1583307-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95c3/12331688/9dc9a6ef56e4/fphar-16-1583307-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95c3/12331688/652857ce092e/fphar-16-1583307-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95c3/12331688/2d6f9d1a6b95/fphar-16-1583307-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95c3/12331688/580256c1a697/fphar-16-1583307-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95c3/12331688/a41cae211437/fphar-16-1583307-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95c3/12331688/289b2c077ded/fphar-16-1583307-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95c3/12331688/17a8ec7055ff/fphar-16-1583307-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95c3/12331688/4e39ff207182/fphar-16-1583307-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95c3/12331688/e475192861fa/fphar-16-1583307-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95c3/12331688/a05fd1b89bcc/fphar-16-1583307-g010.jpg

相似文献

[1]
Schisandrin B alleviates metabolic associated fatty liver disease by regulating the PPARγ signaling pathway and gut microbiota in mice.

Front Pharmacol. 2025-7-25

[2]
Hydroxysafflor yellow A alleviates oxidative stress and inflammatory damage in the livers of mice with nonalcoholic fatty liver disease and modulates gut microbiota.

Front Pharmacol. 2025-6-6

[3]
[Effect of Modified Xiaoyao Powder on intestinal barrier and intestinal flora in mice with metabolic associated fatty liver disease based on "gut-liver axis"].

Zhongguo Zhong Yao Za Zhi. 2024-8

[4]
Study on the modulation of kidney and liver function of rats with diabetic nephropathy by Huidouba through metabolomics.

J Ethnopharmacol. 2025-6-11

[5]
Alisol B ameliorated metabolic dysfunction-associated steatotic liver disease via regulating purine metabolism and restoring the gut microbiota disorders.

Phytomedicine. 2025-6-22

[6]
Mulberry leaf improves type 2 diabetes in mice via gut microbiota-SCFAs-GPRs axis and AMPK signaling pathway.

Phytomedicine. 2025-9

[7]
Effects of extruded corn distillers dried grains with solubles on growth performance, nutrient digestibility, gut health, and microbiota diversity in weaned piglets.

J Anim Sci. 2025-1-4

[8]
[Effect of Wenpi Pills on lipid metabolism in mice with non-alcoholic fatty liver disease induced by various diets].

Zhongguo Zhong Yao Za Zhi. 2025-5

[9]
Multi-omics reveals total flavones from Abelmoschus manihot (L.) Medik. [Malvaceae] ameliorate MAFLD via PI3K/AKT/mTOR-mediated autophagy.

Front Pharmacol. 2025-7-11

[10]
Puerarin Alleviates High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease by Modulating Gut Microbiota.

Ann Clin Lab Sci. 2025-5

本文引用的文献

[1]
Targeting the regulation of iron homeostasis as a potential therapeutic strategy for nonalcoholic fatty liver disease.

Metabolism. 2024-8

[2]
Gut microbiota in MAFLD: therapeutic and diagnostic implications.

Ther Adv Endocrinol Metab. 2024-4-15

[3]
Pomelo peel dietary fiber ameliorates alterations in obesity-related features and gut microbiota dysbiosis in mice fed on a high-fat diet.

Food Chem X. 2023-11-14

[4]
Metabolic-Associated Fatty Liver Disease and the Gut Microbiota.

Endocrinol Metab Clin North Am. 2023-9

[5]
Sodium butyrate ameliorates diabetic retinopathy in mice via the regulation of gut microbiota and related short-chain fatty acids.

J Transl Med. 2023-7-7

[6]
Mulberry leaf water extract alleviates type 2 diabetes in mice via modulating gut microbiota-host co-metabolism of branched-chain amino acid.

Phytother Res. 2023-8

[7]
Metabolic-Dysfunction-Associated Fatty Liver Disease and Gut Microbiota: From Fatty Liver to Dysmetabolic Syndrome.

Medicina (Kaunas). 2023-3-17

[8]
Impact of Infection on the Pathogenesis and Management of Nonalcoholic Fatty Liver Disease.

J Clin Transl Hepatol. 2023-6-28

[9]
MAFLD: a multisystem disease.

Ther Adv Endocrinol Metab. 2023-1-28

[10]
Gut microbiota and its roles in the pathogenesis and therapy of endocrine system diseases.

Microbiol Res. 2023-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索