文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于快速可得临床指标的中暑患者预后列线图

Prognostic nomogram for heat stroke patients based on rapidly accessible clinical indicators.

作者信息

Zhang Tianshan, Xiao Bojie, Tang Guo, Cheng Tao, Gao Hongguang, Zhang Ping, Yao Rong

机构信息

Emergency Department of West China Hospital, Sichuan University, Chengdu, China.

Department of Emergency Medicine, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China.

出版信息

Front Med (Lausanne). 2025 Jul 25;12:1603374. doi: 10.3389/fmed.2025.1603374. eCollection 2025.


DOI:10.3389/fmed.2025.1603374
PMID:40786089
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12331683/
Abstract

PURPOSE: To develop and validate a rapid-assessment scoring system for predicting in-hospital mortality in heat stroke (HS) patients, thereby facilitating early identification and intervention for critical cases. APPROACH: We conducted a retrospective cohort analysis of HS patients admitted to emergency department (ED) of 13 hospitals in southwest of China between July 1, 2022 and December 31, 2024. Clinical parameters including demographic data, initial vital signs, and major organ function biomarkers were systematically collected. Patients were further divided into a training cohort and a validation cohort at a 7:3 ratio. The primary endpoint was all-cause in-hospital mortality. Through rigorous variable selection using Least Absolute Shrinkage and Selection Operator (LASSO) regression followed by multivariable logistic regression modeling, we developed a prognostic nomogram. Model performance was assessed via receiver operating characteristic (ROC) curve analysis, decision curve analysis (DCA), and clinical impact curve (CIC) evaluation, with comparative benchmarking against established scoring systems [Sequential Organ Failure Assessment (SOFA) and Acute Physiology and Chronic Health Evaluation II (APACHE II)]. FINDINGS: A total of 307 patients were included in the study. 114 experienced in-hospital mortality, while 193 survived. Non-survivors exhibited significantly altered baseline values across multiple physiological domains: reduced Glasgow Coma Scale (GCS), impaired oxygenation index (OI), elevated fibrin degradation products (FDP), D-dimer, activated partial thromboplastin time (APTT), and serum creatinine (Cr) (all  < 0.0001). Through LASSO regression followed by multivariate logistic regression analysis, 27 initially significant variables were refined to four independent prognostic indicators: Cr, GCS, OI, and FDP. These predictors were subsequently integrated into a multivariate prognostic nomogram demonstrating discriminative capacity for mortality risk stratification in both training (AUC 0.811, 95% CI 0.751-0.871) and validation cohorts (AUC 0.766, 95% CI 0.706-0.826). DCA revealed superior net benefit across clinically relevant probability thresholds. The AUC of the nomogram in the entire cohort (0.794) was significantly superior to the SOFA score (0.703, DeLong's test,  = 0.0008) and comparable to the APACHE II score (0.765, DeLong's test,  = 0.3581). CONCLUSION: We developed and validated a prognostic tool utilizing routinely available parameters in ED to predict in-hospital mortality in HS patients. This clinically implementable model demonstrates comparable accuracy to established intensive care scoring systems while offering distinct advantages in rapid bedside application, potentially enabling time-critical therapeutic decisions in emergency settings.

摘要

目的:开发并验证一种快速评估评分系统,用于预测中暑(HS)患者的院内死亡率,从而便于对危重症病例进行早期识别和干预。 方法:我们对2022年7月1日至2024年12月31日期间在中国西南部13家医院急诊科收治的HS患者进行了回顾性队列分析。系统收集了包括人口统计学数据、初始生命体征和主要器官功能生物标志物在内的临床参数。患者进一步按7:3的比例分为训练队列和验证队列。主要终点是全因院内死亡率。通过使用最小绝对收缩和选择算子(LASSO)回归进行严格的变量选择,随后进行多变量逻辑回归建模,我们开发了一种预后列线图。通过受试者操作特征(ROC)曲线分析、决策曲线分析(DCA)和临床影响曲线(CIC)评估来评估模型性能,并与既定的评分系统[序贯器官衰竭评估(SOFA)和急性生理与慢性健康评估II(APACHE II)]进行比较基准测试。 结果:本研究共纳入307例患者。114例患者发生院内死亡,193例存活。非存活者在多个生理领域的基线值有显著改变:格拉斯哥昏迷量表(GCS)降低、氧合指数(OI)受损、纤维蛋白降解产物(FDP)、D - 二聚体、活化部分凝血活酶时间(APTT)和血清肌酐(Cr)升高(均P < 0.0001)。通过LASSO回归和多变量逻辑回归分析,27个最初显著的变量被细化为4个独立的预后指标:Cr、GCS、OI和FDP。这些预测指标随后被整合到一个多变量预后列线图中,该列线图在训练队列(AUC 0.811,95%CI 0.751 - 0.871)和验证队列(AUC 0.766,95%CI 0.706 - 0.826)中均显示出对死亡风险分层的判别能力。DCA显示在临床相关概率阈值范围内具有更高的净效益。列线图在整个队列中的AUC(0.794)显著优于SOFA评分(0.703,DeLong检验,P = 0.0008),与APACHE II评分相当(0.765,DeLong检验,P = 0.3581)。 结论:我们开发并验证了一种利用急诊科常规可用参数预测HS患者院内死亡率的预后工具。这种临床可实施的模型显示出与既定的重症监护评分系统相当的准确性,同时在床边快速应用方面具有明显优势,可能有助于在紧急情况下做出关键的治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ec/12331683/e63c93a7d1fc/fmed-12-1603374-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ec/12331683/8f59f2cbc677/fmed-12-1603374-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ec/12331683/3cd31342f5e9/fmed-12-1603374-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ec/12331683/77ef54687446/fmed-12-1603374-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ec/12331683/d04a48f856d9/fmed-12-1603374-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ec/12331683/6e2e53271d40/fmed-12-1603374-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ec/12331683/9eb6633a0d3d/fmed-12-1603374-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ec/12331683/d10b7ff9df0b/fmed-12-1603374-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ec/12331683/e63c93a7d1fc/fmed-12-1603374-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ec/12331683/8f59f2cbc677/fmed-12-1603374-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ec/12331683/3cd31342f5e9/fmed-12-1603374-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ec/12331683/77ef54687446/fmed-12-1603374-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ec/12331683/d04a48f856d9/fmed-12-1603374-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ec/12331683/6e2e53271d40/fmed-12-1603374-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ec/12331683/9eb6633a0d3d/fmed-12-1603374-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ec/12331683/d10b7ff9df0b/fmed-12-1603374-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ec/12331683/e63c93a7d1fc/fmed-12-1603374-g008.jpg

相似文献

[1]
Prognostic nomogram for heat stroke patients based on rapidly accessible clinical indicators.

Front Med (Lausanne). 2025-7-25

[2]
Clinical diagnostic and prognostic value of homocysteine combined with hemoglobin [f (Hcy-Hb)] in cardio-renal syndrome caused by primary acute myocardial infarction.

J Transl Med. 2025-7-23

[3]
Development and validation of a prognostic nomogram for predicting of patients with acute sedative-hypnotic overdose admitted to the intensive care unit.

Sci Rep. 2025-1-27

[4]
Machine learning-based model for predicting all-cause mortality in severe pneumonia.

BMJ Open Respir Res. 2025-3-22

[5]
DEVELOPMENT AND VALIDATION OF A NOMOGRAM FOR PREDICTING 28-DAY IN-HOSPITAL MORTALITY IN SEPSIS PATIENTS BASED ON AN OPTIMIZED ACUTE PHYSIOLOGY AND CHRONIC HEALTH EVALUATION II SCORE.

Shock. 2024-5-1

[6]
Systemic Inflammatory Response Syndrome

2025-1

[7]
Development and validation of a machine learning-based risk prediction model for stroke-associated pneumonia in older adult hemorrhagic stroke.

Front Neurol. 2025-6-18

[8]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[9]
Integrating Neutrophil-To-Albumin Ratio and Triglycerides: A Novel Indicator for Predicting Spontaneous Hemorrhagic Transformation in Acute Ischemic Stroke Patients.

CNS Neurosci Ther. 2024-12

[10]
Development and validation of a nomogram model for predicting the occurrence of necrotizing enterocolitis in premature infants with late-onset sepsis.

Eur J Med Res. 2025-7-8

本文引用的文献

[1]
Specific immune landscape of heatstroke distinguished from sepsis and aseptic inflammation.

Int J Med Sci. 2025-2-26

[2]
Coexisting metabolic dysfunction-associated steatotic liver disease exacerbates in-hospital outcomes in patients with heat stroke.

Front Med (Lausanne). 2024-11-12

[3]
Heatstroke: a multicenter study in Southwestern China.

Front Public Health. 2024-4-17

[4]
Risk Factor Analysis and Nomogram for Predicting In-Hospital Mortality in ICU Patients with Heat Stroke: A National Multicenter Study.

J Multidiscip Healthc. 2023-10-27

[5]
A Systematic Review on Outcomes of Patients with Heatstroke and Heat Exhaustion.

Open Access Emerg Med. 2023-9-22

[6]
Heatstroke-induced acute kidney injury and the innate immune system.

Front Med (Lausanne). 2023-8-8

[7]
[Clinical significance of early troponin I levels on the prognosis of patients with severe heat stroke].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2023-7

[8]
The association of standard base excess upon emergency admission with outcomes in patients with heat stroke.

Am J Emerg Med. 2023-10

[9]
Comparison of immune cell profiles associated with heatstroke, sepsis, or cardiopulmonary bypass: Study protocol for an exploratory, case-control study trial.

Front Med (Lausanne). 2023-4-17

[10]
Plasma Soluble Fibrin Is Useful for the Diagnosis of Thrombotic Diseases.

J Clin Med. 2023-3-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索