Wang Jing, Tong Tiejin, Wu Qiang
School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, China.
Front Cell Infect Microbiol. 2025 Jul 25;15:1640352. doi: 10.3389/fcimb.2025.1640352. eCollection 2025.
Animal infectious diseases threaten livestock productivity, public health, and food security. Traditional monoclonal antibodies (mAbs) face limitations in diagnostics and therapy due to their large size, instability, and high cost. Nanobodies (Nbs), derived from camelid heavy-chain antibodies, offer superior properties-small size (~15 kDa), high stability, deep tissue penetration, and cost-effective production. Nbs feature extended CDR3 loops, enabling access to cryptic epitopes, and exhibit exceptional thermal/pH stability. They are generated by immunizing camelids, cloning VHH genes, and screening via phage/yeast display. High-throughput methods (ELISA, flow cytometry) allow rapid isolation of high-affinity Nbs. Compared to mAbs, Nbs are economically produced in prokaryotic systems and engineered into multivalent or Fc-fused formats for enhanced efficacy. In diagnostics, Nbs enable sensitive, low-cost detection of pathogens like PRRSV, ASFV, and avian influenza. Nb-based competitive ELISAs and lateral flow assays improve field surveillance. Therapeutically, Nbs neutralize pathogens by targeting viral proteins (e.g., blocking PRRSV-CD163 entry) or bacterial toxins (e.g., Staphylococcus enterotoxins). Nb-Fc fusions degrade ASFV proteins via TRIM-away, while intracellular Nbs disrupt Mycobacterium ESAT-6 or Toxoplasma actin dynamics. Challenges remain in Nb affinity optimization, intracellular delivery, and half-life. Solutions include fusion with cell-penetrating peptides or viral vectors (e.g., adenoviruses). Reducing cross-species immunogenicity and scaling production are critical for broader adoption. With advances in protein engineering, Nbs hold transformative potential for preventing, diagnosing, and treating animal diseases, offering scalable solutions for global health and food security.
动物传染病威胁着畜牧业生产力、公共卫生和粮食安全。传统单克隆抗体(mAb)由于其体积大、稳定性差和成本高,在诊断和治疗方面面临局限性。源自骆驼科动物重链抗体的纳米抗体(Nb)具有卓越的特性——小尺寸(约15 kDa)、高稳定性、深层组织穿透力和经济高效的生产方式。Nb具有延伸的互补决定区3(CDR3)环,能够识别隐蔽表位,并表现出出色的热/ pH稳定性。它们通过免疫骆驼科动物、克隆VHH基因并通过噬菌体/酵母展示进行筛选而产生。高通量方法(酶联免疫吸附测定法、流式细胞术)可快速分离高亲和力的Nb。与mAb相比,Nb可在原核系统中经济高效地生产,并可工程化为多价或Fc融合形式以增强疗效。在诊断方面,Nb能够灵敏、低成本地检测猪繁殖与呼吸综合征病毒(PRRSV)、非洲猪瘟病毒(ASFV)和禽流感等病原体。基于Nb的竞争性酶联免疫吸附测定法和侧向流动分析法改善了现场监测。在治疗方面,Nb通过靶向病毒蛋白(例如,阻断PRRSV-CD163进入)或细菌毒素(例如,葡萄球菌肠毒素)来中和病原体。Nb-Fc融合蛋白通过TRIM-away降解ASFV蛋白,而细胞内Nb破坏结核分枝杆菌的早期分泌性抗原靶6(ESAT-6)或弓形虫的肌动蛋白动力学。在Nb亲和力优化、细胞内递送和半衰期方面仍然存在挑战。解决方案包括与细胞穿透肽或病毒载体(例如,腺病毒)融合。降低跨物种免疫原性和扩大生产规模对于更广泛的应用至关重要。随着蛋白质工程的进展,Nb在预防、诊断和治疗动物疾病方面具有变革潜力,为全球健康和粮食安全提供可扩展的解决方案。