Nahass George R, Peterson Jeffrey C, Heinze Kevin, Choudhary Akriti, Khandwala Nikhila, Purnell Chad A, Setabutr Pete, Tran Ann Q
Department of Ophthalmology, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA.
Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA.
AJO Int. 2024 Dec 11;1(4). doi: 10.1016/j.ajoint.2024.100083. Epub 2024 Nov 7.
To develop an algorithm to automate the organization of large photo databases using the Haar cascade algorithm for face and eye detection and machine learning tools in Python.
Retrospective study for the purposes of clinical tool development.
We developed an algorithm, termed FaceFinder, to identify front facing images in a large dataset of facial, orthodontal and miscellaneous images. FaceFinder works by detecting the presence of faces and at least two eyes using the Haar cascade. Execution time was recorded using different-sized datasets. A total of 895 images were analyzed by FaceFinder using various thresholds for face and eye detection. Precision, recall, specificity, accuracy, and F1 score were computed by comparison to ground truth labels of the images as determined by a human grader.
Using medium thresholds for face and eye detection, FaceFinder reached recall, accuracy, and F1 score of 89.3%, 91.6%, and 92.9%, respectively with an execution time per image was 0.91 s. Using the highest threshold for face and eye detection, FaceFinder achieved precision and specificity values of 98.3% and 99.2% respectively.
FaceFinder is capable of sorting through a heterogenous dataset of photos of patients with craniofacial disease and identifying high-quality front-facing facial images. This capability allows for automated sorting of large databases that can facilitate and expedite data preparation for further downstream analyses involving artificial intelligence and facial landmarking.
开发一种算法,利用用于面部和眼睛检测的哈尔级联算法以及Python中的机器学习工具,实现大型照片数据库组织的自动化。
为临床工具开发目的进行的回顾性研究。
我们开发了一种名为FaceFinder的算法,用于在包含面部、正畸和其他各类图像的大型数据集中识别正面图像。FaceFinder通过使用哈尔级联检测面部和至少两只眼睛的存在来工作。使用不同大小的数据集记录执行时间。FaceFinder使用各种面部和眼睛检测阈值对总共895张图像进行了分析。通过与人工评分员确定的图像真实标签进行比较,计算精度、召回率、特异性、准确率和F1分数。
使用中等面部和眼睛检测阈值时,FaceFinder的召回率、准确率和F1分数分别达到89.3%、91.6%和92.9%,每张图像的执行时间为0.91秒。使用最高面部和眼睛检测阈值时,FaceFinder的精度和特异性值分别达到98.3%和99.2%。
FaceFinder能够对颅面疾病患者的异质照片数据集进行分类,并识别高质量的正面面部图像。这种能力允许对大型数据库进行自动排序,从而有助于并加快为涉及人工智能和面部标记的进一步下游分析进行数据准备。