Namgung Eun, Kim Young Sun, Kwon Sun U, Kang Dong-Wha
Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
Nunaps Inc., Seoul, Republic of Korea.
Front Neurol. 2025 Jul 25;16:1569073. doi: 10.3389/fneur.2025.1569073. eCollection 2025.
Cognitive decline progresses rapidly in stroke patients, increasing risks of stroke recurrence. Predicting deterioration within a year in patients with poststroke cognitive impairment (PSCI) could guide targeted interventions for dementia prevention and better prognosis. In this PreventIon of CArdiovascular events in iSchemic Stroke patients with high risk of cerebral hemOrrhage for reducing cognitive decline substudy, machine learning on clinical and imaging data was used to predict cognitive decline over 9 months in PSCI patients.
This retrospective study included 109 patients with acute ischemic stroke and high-risk cerebral hemorrhage with PSCI (baseline Korean-Mini Mental Status Examination [K-MMSE] < 24), along with baseline clinical imaging and K-MMSE assessments at baseline and after 9 months. Four machine learning algorithms were trained, Categorical Boosting (CatBoost), Adaptive Boosting (AdaBoost), eXtreme Gradient Boosting (XGBoost), and logistic regression, to predict cognitive decliners, defined as a decline of ≥3 K-MMSE points over 9 months, and ranked variable importance using the SHapley Additive exPlanations methodology.
CatBoost outperformed the other models in classifying cognitive decliners within 9 months. In the test set, CatBoost achieved a mean area under the curve (AUC) of 0.897, with an accuracy of 0.873; other models performed as follows: logistic regression (AUC 0.775), AdaBoost (AUC 0.767), and XGBoost (AUC 0.722). Higher baseline K-MMSE scores (total, language, orientation to place, and recall), longer interval between stroke and baseline K-MMSE, initial National Institutes of Health Stroke Scale scores, and lesion volume ratio were identified as key predictors of cognitive decline in CatBoost. Cognitive decliners showed longer interval between stroke onset and pharmacotherapy initiation than non-decliners.
CatBoost effectively recognized patients with ischemic stroke at high risk of cognitive decline over 9 months. Recognizing these high-risk individuals and their risk and protective factors allows for timely and targeted interventions to improve prognosis in PSCI patients.
中风患者认知功能衰退进展迅速,会增加中风复发风险。预测中风后认知障碍(PSCI)患者一年内的病情恶化情况,可为预防痴呆症及改善预后提供有针对性的干预措施。在这项针对有脑出血高风险的缺血性中风患者预防心血管事件以减少认知衰退的子研究中,利用临床和影像数据进行机器学习,以预测PSCI患者9个月内的认知衰退情况。
这项回顾性研究纳入了109例患有急性缺血性中风且有高风险脑出血的PSCI患者(基线韩国简易精神状态检查表[K-MMSE]<24),同时在基线和9个月后进行了基线临床影像和K-MMSE评估。训练了四种机器学习算法,即分类提升(CatBoost)、自适应提升(AdaBoost)、极端梯度提升(XGBoost)和逻辑回归,以预测认知衰退者,即9个月内K-MMSE评分下降≥3分者,并使用沙普利值加性解释方法对变量重要性进行排名。
在对9个月内的认知衰退者进行分类方面,CatBoost的表现优于其他模型。在测试集中,CatBoost的平均曲线下面积(AUC)为0.897,准确率为0.873;其他模型的表现如下:逻辑回归(AUC 0.775)、AdaBoost(AUC 0.767)和XGBoost(AUC 0.722)。较高的基线K-MMSE评分(总分、语言、地点定向和回忆)、中风与基线K-MMSE之间的间隔时间较长、初始美国国立卫生研究院卒中量表评分以及病灶体积比被确定为CatBoost中认知衰退的关键预测因素。认知衰退者中风发作与开始药物治疗之间的间隔时间比非衰退者更长。
CatBoost有效识别出9个月内有认知衰退高风险的缺血性中风患者。识别这些高风险个体及其风险和保护因素,有助于及时进行有针对性的干预,以改善PSCI患者的预后。