Suppr超能文献

GGCRB:一种利用结构和序列特征预测环状RNA与RNA结合蛋白相互作用的图神经网络方法。

GGCRB: A Graph Neural Network Approach for Predicting CircRNA-RBP Interactions Using Structural and Sequence Features.

作者信息

Tang Guangyi, Xing Hongyuan, Yao Dengju, Zhan Xiaojuan, Li Xiangkui

机构信息

School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China.

College of Computer Science and Technology, Heilongjiang Institute of Technology, Harbin 150050, China.

出版信息

ACS Omega. 2025 Jul 22;10(30):33662-33674. doi: 10.1021/acsomega.5c04524. eCollection 2025 Aug 5.

Abstract

The interaction between circular RNAs (circRNAs) and RNA-binding proteins (RBPs) plays a crucial role in gene regulation; however, experimental identification is costly and inefficient. Current computational methods often overlook the structural features of circRNAs, thereby limiting prediction accuracy. To address these challenges, we propose GGCRB, a deep learning framework that integrates both sequence and structural features for predicting circRNA-RBP binding sites. Sequence features are captured through five encoding schemes (HFN, ND, NCP, DPCP, and Doc2Vec), followed by convolutional layers for local pattern extraction. Structural features are derived from base-pairing adjacency matrices generated by RNAstructure and modeled using graph convolutional networks and graph attention networks to learn topological dependencies. The fused representations are further processed by bidirectional LSTM and multihead attention modules to capture global interactions. Final predictions are made through pooling and softmax layers. Extensive experiments on 16 benchmark data sets demonstrate that GGCRB significantly outperforms existing models. Ablation studies and motif analyses further confirm its effectiveness, underscoring the importance of integrating structural and sequence information for accurate prediction of circRNA-RBP interactions.

摘要

环状RNA(circRNAs)与RNA结合蛋白(RBPs)之间的相互作用在基因调控中起着至关重要的作用;然而,实验鉴定成本高且效率低。当前的计算方法常常忽略circRNAs的结构特征,从而限制了预测准确性。为应对这些挑战,我们提出了GGCRB,这是一个深度学习框架,它整合了序列和结构特征来预测circRNA-RBP结合位点。通过五种编码方案(HFN、ND、NCP、DPCP和Doc2Vec)捕获序列特征,随后通过卷积层进行局部模式提取。结构特征源自RNAstructure生成的碱基配对邻接矩阵,并使用图卷积网络和图注意力网络进行建模,以学习拓扑依赖性。融合后的表示通过双向LSTM和多头注意力模块进一步处理,以捕获全局相互作用。最终预测通过池化层和softmax层进行。在16个基准数据集上进行的大量实验表明,GGCRB显著优于现有模型。消融研究和基序分析进一步证实了其有效性,强调了整合结构和序列信息以准确预测circRNA-RBP相互作用的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ab/12332793/d0fb6560a43d/ao5c04524_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验