Suppr超能文献

二氧化碳转化为化学品:在NiGa/Cu-ZSM-5复合材料上提高CO转化效率

Carbon Dioxide to Chemicals: CO Conversion Enhancement over NiGa/Cu-ZSM‑5 Composite Material.

作者信息

Aboghander Mohammed Walid, Abidh Sainul, Khan Abuzar, Bafaqeer Abdullah, Abdul Jameel Abdul Gani, Chennampilly Ummer Aniz

机构信息

Radhwa International School, Salah Ad-Din Ayyubi Rd, Al-Nakheel, Yanbu 46451, Saudi Arabia.

Interdisciplinary Research Center of Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.

出版信息

ACS Omega. 2025 Jul 26;10(30):32691-32702. doi: 10.1021/acsomega.4c10176. eCollection 2025 Aug 5.

Abstract

Carbon dioxide (CO) is one of the major contributors toward global warming and climate change activities, and significant efforts are being taken to mitigate it in terms of reducing release, capturing, sequestering, and converting it to useful products. Among various decarbonization strategies, CO hydrogenation is considered a suitable technology, but the process suffers from lower conversion, low yield, low selectivity, and cost-effectiveness issues of the catalyst employed. The literature gap lies in the inability to correlate the catalyst complexity with chemical production. The aim of this study was to synthesize an efficient and selective novel catalyst by combining two separately tested and distinct materials to create a sustainable catalyst. The constituents were chosen for their distinctive thermal and structural properties: NiGa and Cu-ZSM-5. NiGa was synthesized via facile coprecipitation, and Cu-ZSM-5 was synthesized via impregnation. The nanocomposite NiGa/Cu-ZSM-5 was synthesized by mechanochemical synthesis and was characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), BET analysis, Barrett-Joyner-Halenda (BJH) analysis, transmission electron microscopy (TEM), and FTIR. Finally, it was reduced in an H atmosphere at 700 °C for 2 h and tested in a thermal feed-flow reactor at different conditions. Among five different test conditions, the highest conversion and improved selectivity are observed for the NiGa/Cu-ZSM-5 sample. This enhanced efficiency can be attributed to the well-designed structural integrity of the nanocomposite and the efficient cultivation of an acidic and highly porous surface environment for the catalyst. The thermal stability of the nanocomposite can be attributed to the utilization of ZSM-5, which acts as a protective layer, lasting for a continuous stable 20 h operation production. Thus, the NiGa/Cu-ZSM-5 composite is proven to be a cheap and efficient thermal catalyst for CO hydrogenation.

摘要

二氧化碳(CO₂)是导致全球变暖和气候变化活动的主要因素之一,人们正在做出巨大努力,通过减少排放、捕获、封存以及将其转化为有用产品等方式来减轻其影响。在各种脱碳策略中,CO₂加氢被认为是一种合适的技术,但该过程存在转化率低、产率低、选择性低以及所用催化剂成本效益等问题。文献中的差距在于无法将催化剂的复杂性与化学品生产联系起来。本研究的目的是通过将两种分别测试且不同的材料结合起来,合成一种高效且选择性的新型催化剂,以创建一种可持续的催化剂。选择这些成分是因其独特的热性能和结构性能:NiGa和Cu-ZSM-5。NiGa通过简便的共沉淀法合成,Cu-ZSM-5通过浸渍法合成。纳米复合材料NiGa/Cu-ZSM-5通过机械化学合成法制备,并通过X射线衍射(XRD)、热重分析(TGA)、BET分析、巴雷特-乔伊纳-哈伦达(BJH)分析、透射电子显微镜(TEM)和傅里叶变换红外光谱(FTIR)进行表征。最后,在700℃的氢气气氛中还原2小时,并在不同条件下的热进料流动反应器中进行测试。在五种不同的测试条件下,观察到NiGa/Cu-ZSM-5样品具有最高的转化率和提高的选择性。这种提高的效率可归因于纳米复合材料精心设计的结构完整性以及为催化剂有效营造的酸性和高孔隙表面环境。纳米复合材料的热稳定性可归因于ZSM-5的利用,它起到了保护层的作用,能够持续稳定运行20小时进行生产。因此,NiGa/Cu-ZSM-5复合材料被证明是一种用于CO₂加氢的廉价且高效的热催化剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8487/12332570/306001aab0a2/ao4c10176_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验