Hallam T J, Rink T J
J Physiol. 1985 Nov;368:131-46. doi: 10.1113/jphysiol.1985.sp015850.
ADP produces a rapid elevation in the concentration of cytoplasmic free calcium, [Ca2+]i, in quin2-loaded human platelets which begins within 1 s of stimulation and peaks after 10 s. In the presence of 1 mM-extracellular calcium, [Ca2+]i peaks at 670 +/- 50 nM in the absence and 610 +/- 30 nM in the presence of a cyclo-oxygenase inhibitor. The production of prostaglandin endoperoxides and thromboxane A2 are not required for stimulation of Ca2+ fluxes by ADP but appear to have a supportive role. In the absence of extracellular calcium ions and with 1 mM-extracellular EGTA, stimulation with ADP caused [Ca2+]i to peak at 160 +/- 20 nM in the absence and 150 +/- 10 nM in the presence of a cyclo-oxygenase inhibitor. ADP can cause the discharge of calcium ions from internal stores and does not require the prior formation of prostaglandin endoperoxides or thromboxane A2. The rise in [Ca2+]i in the presence of extracellular Ca2+ is sixfold larger than in the absence of extracellular Ca2+. This suggests that the major component of the ADP-stimulated rise in [Ca2+]i is caused by the influx of Ca2+ ions across the plasma membrane. Diltiazem, D600, nimodipine and nifedipine had little or no effect on resting or ADP-stimulated [Ca2+]i levels. Depolarization with potassium-rich media alone or in conjunction with valinomycin had no effect on basal [Ca2+]i and only a partial inhibitory effect on ADP-stimulated increases in [Ca2+]i. Depolarization had no effect on the ADP-stimulated rise in [Ca2+]i in Ca2+-free media. Hyperpolarization had no marked effect on the rise in [Ca2+]i produced by ADP in the presence of extracellular calcium. These results are consistent with there being no voltage-dependent channels in the platelet plasma membrane. Using ionomycin, a selective Ca2+ ionophore, and measuring both quin2 fluorescence and optical density of the suspension simultaneously, the threshold [Ca2+]i for shape change was determined to be 300 nM with half-maximal effect at 500 nM and maximal shape change at 800 nM. ADP produced maximal shape change confirmed by scanning electron microscopy with corresponding [Ca2+]i at below 200 nM. The level of [Ca2+]i required to produce aggregation using ionomycin was approximately 1 microM. ADP alone, or following a smaller rise in [Ca2+]i produced by ionomycin to disguise the effect of ADP, produced an aggregatory response at concentrations below 1 microM. These data indicate that excitatory mechanisms are involved producing shape change and aggregation to ADP other than a stimulated rise in [Ca2+]i.
ADP可使经喹啉-2(quin2)负载的人血小板胞质游离钙浓度([Ca2+]i)迅速升高,这种升高在刺激后1秒内开始,10秒后达到峰值。在存在1 mM细胞外钙的情况下,在不存在环氧化酶抑制剂时,[Ca2+]i峰值为670±50 nM,在存在环氧化酶抑制剂时为610±30 nM。前列腺素内过氧化物和血栓素A2的产生并非ADP刺激Ca2+通量所必需,但似乎具有支持作用。在不存在细胞外钙离子且存在1 mM细胞外乙二醇双四乙酸(EGTA)的情况下,用ADP刺激,在不存在环氧化酶抑制剂时,[Ca2+]i峰值为160±20 nM,在存在环氧化酶抑制剂时为150±10 nM。ADP可使钙离子从内部储存库释放,且不需要预先形成前列腺素内过氧化物或血栓素A2。在存在细胞外Ca2+的情况下,[Ca2+]i的升高幅度比不存在细胞外Ca2+时大六倍。这表明ADP刺激的[Ca2+]i升高的主要成分是由Ca2+离子跨质膜内流引起的。地尔硫卓(Diltiazem)、D600、尼莫地平(nimodipine)和硝苯地平(nifedipine)对静息或ADP刺激的[Ca²⁺]i水平几乎没有影响。单独用富含钾的培养基或与缬氨霉素联合进行去极化,对基础[Ca²⁺]i没有影响,对ADP刺激的[Ca²⁺]i升高仅有部分抑制作用。在无Ca²⁺培养基中,去极化对ADP刺激的[Ca²⁺]i升高没有影响。超极化对在存在细胞外钙的情况下ADP引起的[Ca²⁺]i升高没有显著影响。这些结果与血小板质膜中不存在电压依赖性通道一致。使用离子霉素(一种选择性Ca²⁺离子载体),同时测量喹啉-2荧光和悬浮液的光密度,确定形状改变的阈值[Ca²⁺]i为300 nM,在500 nM时达到半数最大效应,在800 nM时达到最大形状改变。通过扫描电子显微镜证实ADP产生最大形状改变时,相应的[Ca²⁺]i低于200 nM。使用离子霉素产生聚集所需的[Ca²⁺]i水平约为1 microM。单独的ADP,或在离子霉素引起较小的[Ca²⁺]i升高以掩盖ADP的作用之后,在浓度低于1 microM时产生聚集反应。这些数据表明,除了刺激[Ca²⁺]i升高之外,兴奋性机制也参与了对ADP产生形状改变和聚集的过程。