Suppr超能文献

光泽辨别:迈向基于图像的感知模型。

Gloss discrimination: Toward an image-based perceptual model.

作者信息

Cheeseman Jacob R, Ferwerda James A, Morimoto Takuma, Fleming Roland W

机构信息

Department of Experimental Psychology, Justus Liebig University Giessen, Giessen, Germany.

Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, NY, USA.

出版信息

J Vis. 2025 Aug 1;25(10):6. doi: 10.1167/jov.25.10.6.

Abstract

Gloss is typically considered the perceptual counterpart of a surface's reflectance characteristics. Yet, asking how discriminable two surfaces are on the basis of surface properties is a poorly posed question, as scene factors other than reflectance can have substantial effects on how discriminable two glossy surfaces are to humans. This difficulty with predicting gloss discrimination has so far hobbled efforts to establish a perceptual standard for surface gloss. Here, we propose an experimental framework for making this problem tractable, starting from the premise that any perceptual standard of gloss discrimination must account for how distal scene variables influence the statistics of proximal image data. With this goal in mind, we rendered a large set of images in which shape, illumination, viewpoint, and surface roughness were varied. For each combination of viewing conditions, a fixed difference in surface roughness was used to create a pair of images showing the same object (from the same viewpoint and under the same lighting) with high and low gloss. Human participants (N = 150) completed a paired comparisons task in which they were required to select image pairs with the largest apparent gloss difference. Importantly, rankings of the scenes derived from these judgments represent differences in perceived gloss independent of physical reflectance. We find that these rankings are remarkably consistent across participants, and are well-predicted by a straightforward Visual Differences Predictor (Daly, 1992; Mantiuk, Hammou, & Hanji, 2023). This allows us to estimate bounds on visual discriminability for a given surface across a wide range of viewing conditions.

摘要

光泽通常被认为是表面反射特性的感知对应物。然而,基于表面属性询问两个表面的可辨别程度是一个表述欠佳的问题,因为除反射率之外的场景因素会对人类辨别两个光泽表面的难易程度产生重大影响。到目前为止,预测光泽辨别方面的这一困难阻碍了建立表面光泽感知标准的努力。在此,我们提出一个使这个问题易于处理的实验框架,其出发点是任何光泽辨别感知标准都必须考虑远端场景变量如何影响近端图像数据的统计信息。出于这个目标,我们渲染了大量图像,其中形状、光照、视角和表面粗糙度各不相同。对于每种观看条件组合,使用固定的表面粗糙度差异来创建一对图像,展示相同物体(从相同视角和相同光照下)具有高光泽和低光泽的情况。人类参与者(N = 150)完成了一项配对比较任务,要求他们选择具有最大表观光泽差异的图像对。重要的是,从这些判断得出的场景排名代表了与物理反射率无关的感知光泽差异。我们发现这些排名在参与者之间非常一致,并且可以通过一个简单的视觉差异预测器(戴利,1992;曼蒂克、哈穆和汉吉,2023)得到很好的预测。这使我们能够估计在广泛的观看条件下给定表面的视觉可辨别性界限。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29da/12352513/16ae3f101f3c/jovi-25-10-6-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验