Suppr超能文献

用于检测水环境中多种全氟化合物的机器学习辅助三发射镧系金属有机框架传感器阵列

Machine learning-assisted triple-emission Ln-MOFs sensor array for detection of multiple PFCs in aqueous environments.

作者信息

Su Chenglin, Yu Xueling, Zhang Renguo, Sun Xuejia, Li Chen, Sun Qijun, Niu Na, Chen Ligang

机构信息

College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.

College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.

出版信息

Biosens Bioelectron. 2025 Nov 15;288:117854. doi: 10.1016/j.bios.2025.117854. Epub 2025 Aug 11.

Abstract

Perfluorinated compounds (PFCs) are persistent environmental pollutants with potential carcinogenicity, posing a major threat to ecosystems and human health. Rapid identification of PFCs in complex environmental matrices remains challenging due to the limitations of conventional single-emission probes in their sensitivity to environmental disturbances. This study developed a three-channel fluorescence sensing platform based on a europium/terbium (Eu/Tb) bimetallic organic framework. By using 2,3,5,6-tetrafluoroterephthalic acid and 1,10-phenanthroline as dual ligands to coordinate europium/terbium ions to construct a new fluorescent probe, the triple characteristic emission of Eu, Tb and ligands was achieved under a single-wavelength excitation, effectively overcoming the drawback that traditional single-emission probes are easily disturbed by environmental variables. The array exhibits a wide linear detection range of 0.1-100 μM for six PFCs, with a detection limit of 42 nM. Hierarchical clustering analysis and linear discriminant analysis accurately identified the six PFCs and their mixtures. Furthermore, the stepwise prediction model developed by integrating machine learning algorithms enables concentration-independent qualitative identification of six PFCs, while also achieving precise quantitative determination. The high accuracy achieved in blind sample validation further confirms the feasibility of the model for practical applications. This technology achieves rapid and high-precision monitoring of trace persistent pollutants through multi-signal collaboration and intelligent analysis, which is highly significant for environmental risk management and pollution reduction.

摘要

全氟化合物(PFCs)是具有潜在致癌性的持久性环境污染物,对生态系统和人类健康构成重大威胁。由于传统单发射探针在对环境干扰的敏感性方面存在局限性,在复杂环境基质中快速鉴定PFCs仍然具有挑战性。本研究开发了一种基于铕/铽(Eu/Tb)双金属有机框架的三通道荧光传感平台。通过使用2,3,5,6-四氟对苯二甲酸和1,10-菲咯啉作为双配体来配位铕/铽离子构建新型荧光探针,在单波长激发下实现了Eu、Tb和配体的三重特征发射,有效克服了传统单发射探针容易受到环境变量干扰的缺点。该阵列对六种PFCs的线性检测范围宽达0.1 - 100 μM,检测限为42 nM。层次聚类分析和线性判别分析准确识别了六种PFCs及其混合物。此外,通过集成机器学习算法开发的逐步预测模型能够对六种PFCs进行与浓度无关的定性识别,同时还能实现精确的定量测定。盲样验证中实现的高精度进一步证实了该模型在实际应用中的可行性。该技术通过多信号协作和智能分析实现了对痕量持久性污染物的快速高精度监测,对环境风险管理和污染减排具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验