School of Physics and Electronic Information, Yantai University, Yantai, 264005, China.
Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, 250117, China.
Sci Rep. 2024 Oct 21;14(1):24693. doi: 10.1038/s41598-024-75925-w.
Diagnosing Sjogren's syndrome requires considerable time and effort from physicians, primarily because it necessitates rigorously establishing the presence lymphatic infiltration in the pathological tissue of the labial gland. The aim of this study is to use deep learning techniques to overcome these limitations and improve diagnostic accuracy and efficiency in pathology. We develop an auxiliary diagnostic system for Sjogren's syndrome. The system incorporates the state-of-the-art object detection neural network, YOLOv8, and enables the precise identification and flagging of suspicious lesions. We design the multi-dimensional attention module and S-MPDIoU loss function to improve the detection performance of YOLOv8. By extracting features from multiple dimensions of the feature map, the utilization of the multi-dimensional attention mechanism enhances the feature interaction across disparate positions, enabling the network to proficiently learn and retain salient cell features. S-MPDIoU introduces an angle penalty term that efficiently minimizes the diagonal distance between predicted and ground truth boxes. Additionally, it incorporates a flexible scale factor tailored to different size feature maps, which balances the issue of sudden gradient decrease during high overlap, thereby accelerating the overall convergence rate. To verify the effectiveness of our methods, we create a dataset of lymphocytes using labial gland biopsy pathology images collected from YanTaiShan hospital and trained the model with this dataset. The proposed model is assessed using standard metrics like precision, recall, mAP. The improved model achieves an increase in recall by 9.1%, mAP.5 by 3.2%, and mAP.95 by 2%. The study demonstrated deep learning's potential to analysis pathology images, offering a reference framework for the application of deep learning technology in the medical domain.
诊断干燥综合征需要医生付出大量的时间和精力,主要是因为需要严格确定唇腺病理组织中是否存在淋巴浸润。本研究旨在利用深度学习技术克服这些限制,提高病理诊断的准确性和效率。我们开发了一种干燥综合征的辅助诊断系统。该系统结合了最先进的目标检测神经网络 YOLOv8,能够精确识别和标记可疑病变。我们设计了多维注意力模块和 S-MPDIoU 损失函数,以提高 YOLOv8 的检测性能。通过从特征图的多个维度提取特征,多维注意力机制的利用增强了不同位置之间的特征交互,使网络能够熟练地学习和保留显著的细胞特征。S-MPDIoU 引入了一个角度惩罚项,有效地最小化了预测框和真实框之间的对角线距离。此外,它还包含了一个灵活的比例因子,适用于不同大小的特征图,平衡了高重叠时梯度突然下降的问题,从而加速了整体收敛速度。为了验证我们方法的有效性,我们使用从烟台山医院收集的唇腺活检病理图像创建了一个淋巴细胞数据集,并使用该数据集对模型进行了训练。该模型使用标准指标进行评估,如精度、召回率、mAP。改进后的模型的召回率提高了 9.1%,mAP.5 提高了 3.2%,mAP.95 提高了 2%。研究表明,深度学习有潜力分析病理图像,为深度学习技术在医学领域的应用提供了参考框架。