文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于阿尔茨海默病生物标志物评估的多模态数据的人工智能驱动融合。

AI-driven fusion of multimodal data for Alzheimer's disease biomarker assessment.

作者信息

Jasodanand Varuna H, Kowshik Sahana S, Puducheri Shreyas, Romano Michael F, Xu Lingyi, Au Rhoda, Kolachalama Vijaya B

机构信息

Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.

Faculty of Computing & Data Sciences, Boston University, Boston, MA, USA.

出版信息

Nat Commun. 2025 Aug 11;16(1):7407. doi: 10.1038/s41467-025-62590-4.


DOI:10.1038/s41467-025-62590-4
PMID:40789853
Abstract

Alzheimer's disease (AD) diagnosis hinges on detecting amyloid beta (Aβ) plaques and neurofibrillary tau (τ) tangles, typically assessed using PET imaging. While accurate, these modalities are expensive and not widely accessible, limiting their utility in routine clinical practice. Here, we present a multimodal computational framework that integrates data from seven distinct cohorts comprising 12, 185 participants to estimate individual PET profiles using more readily available neurological assessments. Our approach achieved an AUROC of 0.79 and 0.84 in classifying Aβ and τ status, respectively. Predicted PET status was consistent with various biomarker profiles and postmortem pathology, and model-identified regional brain volumes aligned with known spatial patterns of tau deposition. This approach can support scalable pre-screening of candidates for anti-amyloid therapies and clinical trials targeting Aβ and τ, offering a practical alternative to direct PET imaging.

摘要

阿尔茨海默病(AD)的诊断依赖于检测淀粉样β(Aβ)斑块和神经纤维缠结tau(τ),通常使用正电子发射断层扫描(PET)成像进行评估。虽然这些方法准确,但成本高昂且无法广泛应用,限制了它们在常规临床实践中的效用。在此,我们提出了一个多模态计算框架,该框架整合了来自七个不同队列、共12185名参与者的数据,以使用更容易获得的神经学评估来估计个体的PET图像。我们的方法在分类Aβ和τ状态时的受试者工作特征曲线下面积(AUROC)分别达到了0.79和0.84。预测的PET状态与各种生物标志物特征及死后病理学结果一致,且模型识别出的区域脑容量与已知的tau沉积空间模式相符。这种方法可以支持对淀粉样蛋白治疗候选者以及针对Aβ和τ的临床试验进行可扩展的预筛选,为直接PET成像提供了一种实用的替代方案。

相似文献

[1]
AI-driven fusion of multimodal data for Alzheimer's disease biomarker assessment.

Nat Commun. 2025-8-11

[2]
AI-driven fusion of neurological work-up for assessment of biological Alzheimer's disease.

medRxiv. 2025-3-17

[3]
Sex-specific modulation of amyloid-β on tau phosphorylation underlies faster tangle accumulation in females.

Brain. 2024-4-4

[4]
Amyloid-β peptide signature associated with cerebral amyloid angiopathy in familial Alzheimer's disease with APPdup and Down syndrome.

Acta Neuropathol. 2024-7-18

[5]
Timeline to symptomatic Alzheimer's disease in people with Down syndrome as assessed by amyloid-PET and tau-PET: a longitudinal cohort study.

Lancet Neurol. 2024-12

[6]
Salivary levels of amyloid beta reflect brain amyloid beta burden in cognitively-normal older adults.

J Prev Alzheimers Dis. 2025-6-9

[7]
Joint spatial associations of amyloid beta and tau pathology in Down syndrome and preclinical Alzheimer's disease: Cross-sectional associations with early cognitive impairments.

Alzheimers Dement. 2025-7

[8]
In vivo tau PET imaging in dementia: Pathophysiology, radiotracer quantification, and a systematic review of clinical findings.

Ageing Res Rev. 2017-3-15

[9]
CSF tau and the CSF tau/ABeta ratio for the diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI).

Cochrane Database Syst Rev. 2017-3-22

[10]
Enhanced microglial dynamics and a paucity of tau seeding in the amyloid plaque microenvironment contribute to cognitive resilience in Alzheimer's disease.

Acta Neuropathol. 2024-8-5

本文引用的文献

[1]
Machine learning prediction of tau-PET in Alzheimer's disease using plasma, MRI, and clinical data.

Alzheimers Dement. 2025-2

[2]
Positron emission tomography harmonization in the Alzheimer's Disease Neuroimaging Initiative: A scalable and rigorous approach to multisite amyloid and tau quantification.

Alzheimers Dement. 2025-1

[3]
AI-based differential diagnosis of dementia etiologies on multimodal data.

Nat Med. 2024-10

[4]
Revised criteria for diagnosis and staging of Alzheimer's disease: Alzheimer's Association Workgroup.

Alzheimers Dement. 2024-8

[5]
Alzheimer disease blood biomarkers: considerations for population-level use.

Nat Rev Neurol. 2024-8

[6]
Tau Positron Emission Tomography for Predicting Dementia in Individuals With Mild Cognitive Impairment.

JAMA Neurol. 2024-8-1

[7]
Machine learning prediction of future amyloid beta positivity in amyloid-negative individuals.

Alzheimers Res Ther. 2024-2-27

[8]
Biomarker Changes during 20 Years Preceding Alzheimer's Disease.

N Engl J Med. 2024-2-22

[9]
Speech patterns during memory recall relates to early tau burden across adulthood.

Alzheimers Dement. 2024-4

[10]
Diagnostic Accuracy of a Plasma Phosphorylated Tau 217 Immunoassay for Alzheimer Disease Pathology.

JAMA Neurol. 2024-3-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索