Jasodanand Varuna H, Kowshik Sahana S, Puducheri Shreyas, Romano Michael F, Xu Lingyi, Au Rhoda, Kolachalama Vijaya B
Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
Faculty of Computing & Data Sciences, Boston University, MA, USA.
medRxiv. 2025 Mar 17:2025.03.12.25323862. doi: 10.1101/2025.03.12.25323862.
Alzheimer's disease (AD) diagnosis hinges on detecting amyloid beta (A) plaques and neurofibrillary tau () tangles. While amyloid PET imaging is now clinically approved, tau PET remains largely restricted to research settings. These imaging techniques, though valuable, are expensive and often difficult to access, limiting their widespread use in routine clinical practice. Here, we introduce a computational framework that leverages multimodal data from seven distinct cohorts comprising 12, 185 participants to estimate individual PET profiles, both global and regional, using more accessible data modalities, such as demographics, medical history, medication use, fluid measurements, functional and neuropsychological assessments, and structural MRIs. Our approach achieved an area under the receiver operating characteristic curve of 0.79 and 0.84 in classifying persons with positive A and status, respectively. Model predictions were consistent with various biomarker and cognitive profiles, as well as with different degrees of protein abnormalities observed in post-mortem examinations. Furthermore, the regional volumes identified by the model as important aligned with the spatial distributions of the standardized uptake value ratio for regional labels. Our model offers a practical approach to identify potential candidates for newly approved anti-amyloid treatments and AD clinical trials for combined amyloid and tau therapies by utilizing standard neurological evaluation data.
阿尔茨海默病(AD)的诊断取决于检测β淀粉样蛋白(A)斑块和神经原纤维缠结(tau)。虽然淀粉样蛋白PET成像目前已获临床批准,但tau PET在很大程度上仍局限于研究环境。这些成像技术虽然很有价值,但成本高昂且往往难以获得,限制了它们在常规临床实践中的广泛应用。在此,我们引入了一个计算框架,该框架利用来自七个不同队列、共12185名参与者的多模态数据,通过使用更容易获取的数据模式,如人口统计学、病史、用药情况、血液检测、功能和神经心理学评估以及结构MRI,来估计个体的PET特征,包括整体和区域特征。我们的方法在对A阳性和tau阳性个体进行分类时,受试者工作特征曲线下面积分别达到了0.79和0.84。模型预测与各种生物标志物和认知特征一致,也与尸检中观察到的不同程度的蛋白质异常一致。此外,模型确定为重要的区域体积与区域tau标记的标准化摄取值比率的空间分布一致。我们的模型提供了一种实用方法,通过利用标准神经学评估数据来识别新批准的抗淀粉样蛋白治疗以及淀粉样蛋白和tau联合治疗的AD临床试验的潜在候选者。