Suppr超能文献

具有频率梳声光相干编码(FACE)的超高通量单像素复场显微镜

Ultrahigh-throughput single-pixel complex-field microscopy with frequency-comb acousto-optic coherent encoding (FACE).

作者信息

Wu Daixuan, Shen Yuecheng, Zhu Zhongzheng, Li Tijian, Luo Jiawei, Wang Zhengyang, Liang Jiaming, Zhang Zhiling, Yao Yunhua, Qi Dalong, Deng Lianzhong, Sun Zhenrong, Liu Meng, Luo Zhi-Chao, Zhang Shian

机构信息

Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, Guangdong, 510006, China.

State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China.

出版信息

Light Sci Appl. 2025 Aug 11;14(1):266. doi: 10.1038/s41377-025-01931-w.

Abstract

Single-pixel imaging (SPI) is a promising technology for optical imaging beyond the visible spectrum, where commercial cameras are expensive or unavailable. However, limitations such as slow pattern projection rates and time-consuming reconstruction algorithms hinder its throughput for real-time imaging. Consequently, conventional SPI is inadequate for high-speed, high-resolution tasks. To address these challenges, we developed an ultrahigh-throughput single-pixel complex-field microscopy (SPCM) system utilizing frequency-comb acousto-optic coherent encoding (FACE). This system enables real-time complex-field monitoring in the non-visible domain. Operating at 1030 nm, our system achieves a record-high space-bandwidth-time product (SBP-T) of 1.3 × 10, surpassing previous SPCM (10), SPI (10), and even certain types of commercial near-infrared cameras (~10). It supports real-time streaming at 1000 Hz with a frame size of 80 × 81 pixels and a lateral resolution of 3.76 μm across an approximately 300 μm field of view. We validated the system by imaging dynamic transparent scenes, including microfluidics, live microorganisms, chemical reactions, as well as imaging through scattering media. This advancement offers a superior solution for high-speed, high-resolution complex-field imaging beyond the visible spectrum, significantly enhancing SPI performance across various applications.

摘要

单像素成像(SPI)是一种很有前景的技术,适用于可见光谱以外的光学成像,在该光谱范围内,商用相机价格昂贵或无法获取。然而,诸如图案投影速率慢和重建算法耗时等限制因素阻碍了其用于实时成像的通量。因此,传统的SPI不足以应对高速、高分辨率任务。为应对这些挑战,我们开发了一种利用频率梳声光相干编码(FACE)的超高通量单像素复场显微镜(SPCM)系统。该系统能够在不可见域进行实时复场监测。我们的系统工作在1030纳米,实现了创纪录的1.3×10的高空间带宽时间积(SBP-T),超过了之前的SPCM(10)、SPI(10),甚至某些类型的商用近红外相机(~10)。它支持在1000赫兹下进行实时流传输,帧大小为80×81像素,在约300微米的视场范围内横向分辨率为3.76微米。我们通过对动态透明场景成像来验证该系统,这些场景包括微流体、活微生物、化学反应以及通过散射介质成像。这一进展为可见光谱以外的高速、高分辨率复场成像提供了卓越的解决方案,显著提高了SPI在各种应用中的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1275/12340123/ff6ae8b84f9f/41377_2025_1931_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验