Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093.
Department of Bioengineering, University of California San Diego, La Jolla, CA 92093.
Proc Natl Acad Sci U S A. 2022 Feb 22;119(8). doi: 10.1073/pnas.2118068119.
We develop a high-throughput technique to relate positions of individual cells to their three-dimensional (3D) imaging features with single-cell resolution. The technique is particularly suitable for nonadherent cells where existing spatial biology methodologies relating cell properties to their positions in a solid tissue do not apply. Our design consists of two parts, as follows: recording 3D cell images at high throughput (500 to 1,000 cells/s) using a custom 3D imaging flow cytometer (3D-IFC) and dispensing cells in a first-in-first-out (FIFO) manner using a robotic cell placement platform (CPP). To prevent errors due to violations of the FIFO principle, we invented a method that uses marker beads and DNA sequencing software to detect errors. Experiments with human cancer cell lines demonstrate the feasibility of mapping 3D side scattering and fluorescent images, as well as two-dimensional (2D) transmission images of cells to their locations on the membrane filter for around 100,000 cells in less than 10 min. While the current work uses our specially designed 3D imaging flow cytometer to produce 3D cell images, our methodology can support other imaging modalities. The technology and method form a bridge between single-cell image analysis and single-cell molecular analysis.
我们开发了一种高通量技术,可将单个细胞的位置与其三维(3D)成像特征相关联,具有单细胞分辨率。该技术特别适用于非贴壁细胞,因为现有的将细胞特性与其在固体组织中的位置相关联的空间生物学方法不适用于这些细胞。我们的设计由两部分组成,如下所示:使用定制的 3D 成像流式细胞仪(3D-IFC)以高通量(500 至 1000 个细胞/秒)记录 3D 细胞图像,并使用机器人细胞放置平台(CPP)以先进先出(FIFO)的方式分配细胞。为了防止由于违反 FIFO 原则而导致的错误,我们发明了一种使用标记珠和 DNA 测序软件来检测错误的方法。用人癌细胞系进行的实验证明了将 3D 侧向散射和荧光图像以及细胞的二维(2D)透射图像映射到膜滤器上的位置的可行性,对于大约 100,000 个细胞,该过程不到 10 分钟即可完成。虽然目前的工作使用我们专门设计的 3D 成像流式细胞仪来生成 3D 细胞图像,但我们的方法可以支持其他成像模式。该技术和方法在单细胞图像分析和单细胞分子分析之间架起了桥梁。