Bai Jiaxin, Li Ning, Ye Hua, Li Xu, Chen Li, Hu Junbo, Pang Baochuan, Chen Xiaodong, Rao Gong, Hu Qinglei, Liu Shijie, Sun Si, Li Cheng, Lv Xiaohua, Zeng Shaoqun, Cai Jing, Cheng Shenghua, Liu Xiuli
MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China.
Nat Commun. 2025 Aug 11;16(1):7429. doi: 10.1038/s41467-025-62589-x.
Insufficient coverage of cervical cytology screening in resource-limited areas remains a major bottleneck for women's health, as traditional centralized methods require significant investment and many qualified pathologists. Using consumer-grade electronic hardware and aspherical lenses, we design an ultra-low-cost and compact microscope. Given the microscope's low resolution, which hinders accurate identification of lesion cells in cervical samples, we train a coarse instance classifier to screen and extract feature sequences of the top 200 instances containing potential lesions from a slide. We further develop Att-Transformer to focus on and integrate the sparse lesion information from these sequences, enabling slide grading. Our model is trained and validated using 3510 low-resolution slides from female patients at four hospitals, and subsequently evaluated on four independent datasets. The system achieves area under the receiver operating characteristic curve values of 0.87 and 0.89 for detecting squamous intraepithelial lesions on 364 slides from female patients at two external primary hospitals, 0.89 on 391 newly collected slides from female patients at the original four hospitals, and 0.85 on 570 human papillomavirus positive slides from female patients. These findings demonstrate the feasibility of our AI-assisted approach for effective detection of high-risk cervical precancer among women in resource-limited regions.
在资源有限的地区,宫颈细胞学筛查覆盖率不足仍然是女性健康的主要瓶颈,因为传统的集中式方法需要大量投资和许多合格的病理学家。我们使用消费级电子硬件和非球面透镜设计了一种超低成本且紧凑的显微镜。鉴于该显微镜分辨率较低,这阻碍了对宫颈样本中病变细胞的准确识别,我们训练了一个粗略实例分类器,以从载玻片中筛选并提取包含潜在病变的前200个实例的特征序列。我们进一步开发了注意力变换器(Att-Transformer),以聚焦并整合来自这些序列的稀疏病变信息,从而实现载玻片分级。我们的模型使用来自四家医院女性患者的3510张低分辨率载玻片进行训练和验证,随后在四个独立数据集上进行评估。对于检测两家外部基层医院女性患者的364张载玻片上的鳞状上皮内病变,该系统在受试者操作特征曲线下面积值分别为0.87和0.89;对于检测原来四家医院女性患者新收集的391张载玻片,该值为0.89;对于检测女性患者的570张人乳头瘤病毒阳性载玻片,该值为0.85。这些发现证明了我们的人工智能辅助方法在资源有限地区有效检测女性高危宫颈前病变的可行性。