Leither Sydney, Strobl Maximilian A R, Scott Jacob G, Dolson Emily
bioRxiv. 2025 Jul 15:2025.07.09.664005. doi: 10.1101/2025.07.09.664005.
Drug resistance in cancer is shaped not only by evolutionary processes but also by eco-evolutionary interactions between tumor subpopulations. These interactions can support the persistence of resistant cells even in the absence of treatment, undermining standard aggressive therapies and motivating drug holiday-based approaches that leverage ecological dynamics. A key challenge in implementing such strategies is efficiently identifying interaction between drug-sensitive and drug-resistant subpopulations. Evolutionary game theory provides a framework for characterizing these interactions. We investigate whether spatial patterns in single time-point images of cell populations can reveal the underlying game theoretic interactions between sensitive and resistant cells. To achieve this goal, we develop an agent-based model in which cell reproduction is governed by local game-theoretic interactions. We compute a suite of spatial statistics on single time-point images from the agent-based model under a range of games being played between cells. We quantify the informativeness of each spatial statistic and demonstrate that a simple machine learning model can classify the type of game being played. Our findings suggest that spatial structure contains sufficient information to infer ecological interactions. This work represents a step toward clinically viable tools for identifying cell-cell interactions in tumors, supporting the development of ecologically informed cancer therapies.
Drug resistance is a major challenge in cancer treatment, often leading to relapse despite initially successful therapy. While mutations are a key driver, ecological interactions between drug-sensitive and drug-resistant cells also play a critical role. These interactions are complex and dynamic, and few molecular biomarkers exist, making them difficult to study and account for in treatment planning. We use evolutionary game theory, a framework for quantifying interactions between cells, to investigate whether it is possible to infer these interactions using just a single time-point image of the cells. We develop an agent-based model where cells reproduce based on local interactions and quantify the resulting patterns in how cells are distributed across space using a suite of spatial statistics. We find that specific interaction types produce distinct spatial patterns that are evident in these metrics, and we train a simple machine learning model to classify the interaction type based on the metrics. Our results suggest that spatial data alone can offer valuable insights into tumor dynamics, potentially enabling more informed and adaptable cancer treatments based on eco-evolutionary principles.
癌症中的耐药性不仅由进化过程塑造,还受到肿瘤亚群之间生态进化相互作用的影响。即使在没有治疗的情况下,这些相互作用也能支持耐药细胞的持续存在,破坏标准的积极治疗方法,并促使基于药物假期的方法利用生态动力学。实施此类策略的一个关键挑战是有效识别药物敏感和耐药亚群之间的相互作用。进化博弈论提供了一个表征这些相互作用的框架。我们研究细胞群体单时间点图像中的空间模式是否能揭示敏感细胞和耐药细胞之间潜在的博弈论相互作用。为实现这一目标,我们开发了一个基于主体的模型,其中细胞繁殖由局部博弈论相互作用控制。我们在细胞之间进行的一系列博弈下,对基于主体模型的单时间点图像计算了一组空间统计量。我们量化了每个空间统计量的信息量,并证明一个简单的机器学习模型可以对正在进行的博弈类型进行分类。我们的研究结果表明,空间结构包含足够的信息来推断生态相互作用。这项工作朝着识别肿瘤中细胞间相互作用的临床可行工具迈出了一步,支持基于生态信息的癌症治疗的发展。
耐药性是癌症治疗中的一个主要挑战,尽管最初治疗成功,但往往导致复发。虽然突变是一个关键驱动因素,但药物敏感和耐药细胞之间的生态相互作用也起着关键作用。这些相互作用复杂且动态,几乎没有分子生物标志物,使得它们在治疗规划中难以研究和考虑。我们使用进化博弈论,一个量化细胞间相互作用的框架,来研究是否有可能仅使用细胞的单时间点图像来推断这些相互作用。我们开发了一个基于主体的模型,其中细胞根据局部相互作用进行繁殖,并使用一组空间统计量量化细胞在空间中分布方式的结果模式。我们发现特定的相互作用类型会产生在这些指标中明显的不同空间模式,并且我们训练了一个简单的机器学习模型根据这些指标对相互作用类型进行分类。我们的结果表明,仅空间数据就能为肿瘤动态提供有价值的见解,潜在地实现基于生态进化原则的更明智和适应性更强的癌症治疗。